Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2610 results for your search.

Abstract

Rapid and accurate field diagnostic tools can be used to support clinical diagnosis during outbreaks of exotic livestock diseases. This study evaluated a mobile PCR amplification platform that performs RNA extraction, real-time reverse-transcription PCR (rRT-PCR) and interpretation of results without operator intervention. Initial studies showed that there was equivalence between the detection limit generated by RNA extracted using the mobile platform and an automated laboratory-based system. In subsequent studies, two validated laboratory-based foot-and-mouth disease virus (FMDV)-specific rRT-PCRs were transferred onto the mobile platform and all assay steps (RI incubation and PCR amplification) were performed with non-lyophilised reagents using an optimised protocol of less than 60 min. The limit of detection of the rRT-PCR on the mobile PCR platform was equivalent to an automated laboratory-based assay used for routine diagnosis of FMDV and there was concordance between these methods for results generated using samples in a reference laboratory proficiency panel. Future studies will be directed at the development and validation of commercially-viable consumables using lyophilised PCR reagents for FMDV and the evaluation of this technology in FMD endemic countries using field samples.

Abstract

Lumpy skin disease (LSD) is a severe viral disease of cattle. Circumstantial evidence suggests that the virus is transmitted mechanically by blood-feeding arthropods. We compared the importance of transmission via direct and indirect contact in field conditions by using mathematical tools. We analyzed a dataset collected during the LSD outbreak in 2006 in a large dairy herd, which included ten separated cattle groups. Outbreak dynamics and risk factors for LSD were assessed by a transmission model. Transmission by three contact modes was modelled; indirect contact between the groups within a herd, direct contact or contact via common drinking water within the groups and transmission by contact during milking procedure. Indirect transmission was the only parameter that could solely explain the entire outbreak dynamics and was estimated to have an overall effect that was over 5 times larger than all other possible routes of transmission, combined. The R-0 value induced by indirect transmission per the presence of an infectious cow for 1 day in the herd was 15.7, while the R-0 induced by direct transmission was 0.36. Sensitivity analysis showed that this result is robust to a wide range of assumptions regarding mean and standard deviation of incubation period and regarding the existence of sub-clinically infected cattle. These results indicate that LSD virus spread within the affected herd could hardly be attributed to direct contact between cattle or contact through the milking procedure. It is therefore concluded that transmission mostly occurs by indirect contact, probably by flying, blood-sucking insects. This has important implications for control of LSD.

Abstract

Five neutralizing antigenic sites have been identified on the surface of serotype O foot-and-mouth disease virus (FMDV). A set of mAb neutralization-escape mutant viruses was used for the first time to evaluate the relative use of known binding sites by polyclonal antibodies from three target species: cattle, sheep and pigs. Antibodies to all five neutralizing antigenic sites were detected in all three species, with most antibodies directed against antigenic site 2, followed by antigenic site 1. In 76% of cattle, 65% of sheep and 58% of pigs, most antibodies were directed against site 2. Antibodies specific to antigenic sites 3, 4 and 5 were found to be minor constituents in the sera of each of the target species. This implies that antigenic site 2 is a dominant neutralization immunogenic site in serotype O FMDV and may therefore be a good candidate for designing novel vaccines.

Abstract

Coronaviruses are single stranded, positive sense RNA viruses, which induce the rearrangement of cellular membranes upon infection of a host cell. This provides the virus with a platform for the assembly of viral replication complexes, improving efficiency of RNA synthesis. The membranes observed in coronavirus infected cells include double membrane vesicles. By nature of their double membrane, these vesicles resemble cellular autophagosomes, generated during the cellular autophagy pathway. In addition, coronavirus infection has been demonstrated to induce autophagy. Here we review current knowledge of coronavirus induced membrane rearrangements and the involvement of autophagy or autophagy protein microtubule associated protein 1B light chain 3 (LC3) in coronavirus replication.

Abstract

The use of virosomes as a vaccine platform has proven successful against several viruses. Here we examined the protective efficacy of a virosome-based vaccine consisting of avian influenza virus (AIV) A/Duck/Czech/56/H4N6 in chickens against a homologous AIV challenge. Virosomes adjuvanted with CpG-ODN or recombinant chicken interferon (IFN)-gamma significantly reduced virus shedding after virus challenge. Furthermore, immunization with virosomes adjuvanted with CpG-ODN increased hemagglutination inhibition (HI) and virus-specific neutralizing serum antibodies, as well as virus-specific serum IgG and mucosal IgA responses. We also found a significant increase in the expression of type I and II interferon genes in the protected birds following virus challenge. In summary, this study demonstrated the ability of virosomes adjuvanted with CpG-ODN to reduce AIV shedding, and elicit virus-specific protective antibody responses in vaccinated birds.

Abstract

Because of ever-increasing throughput requirements of sequencing data, most existing short-read aligners have been designed to focus on speed at the expense of accuracy. The Genome Multitool (GEM) mapper can leverage string matching by filtration to search the alignment space more efficiently, simultaneously delivering precision (performing fully tunable exhaustive searches that return all existing matches, including gapped ones) and speed (being several times faster than comparable state-of-the-art tools).

Abstract

The diamondback moth, Plutella xylostella, is one of the most economically important agricultural pests. The larvae of this moth cause damage by feeding on the foliage of cruciferous vegetables such as cabbage, broccoli, cauliflower and rapeseed. Control generally comprises chemical treatment; however, the diamondback moth is renowned for rapid development of resistance to pesticides. Other methods, such as biological control, have not been able to provide adequate protection. Germline transformation of pest insects has become available in recent years as an enabling technology for new genetics-based control methods, such as the Release of Insects carrying a Dominant Lethal (RIDL (R)). In the present study, we report the first transformation of the diamondback moth, using the piggyBac transposable element, by embryo microinjection. In generating transgenic strains using four different constructs, the function of three regulatory sequences in this moth was demonstrated in driving expression of fluorescent proteins. The transformation rates achieved, 0.480.68%, are relatively low compared with those described in other Lepidoptera, but not prohibitive, and are likely to increase with experience. We anticipate that germline transformation of the diamondback moth will permit the development of RIDL strains for use against this pest and facilitate the wider use of this species as a model organism for basic studies.

Abstract

Background and methods: The appearance of bluetongue virus (BTV) in 2006 within northern Europe exposed a lack of expertise and resources available across this region to enable the accurate morphological identification of species of Culicoides Latreille biting midges, some of which are the major vectors of this pathogen. This work aims to organise extant Culicoides taxonomic knowledge into a database and to produce an interactive identification key for females of Culicoides in the Western Palaearctic (IIKC: Interactive identification key for Culicoides). We then validated IIKC using a trial carried out by six entomologists based in this region with variable degrees of experience in identifying Culicoides. Results: The current version of the key includes 98 Culicoides species with 10 morphological variants, 61 descriptors and 837 pictures and schemes. Validation was carried out by six entomologists as a blind trial with two users allocated to three classes of expertise (beginner, intermediate and advanced). Slides were identified using a median of seven steps and seven minutes and user confidence in the identification varied from 60% for failed identifications to a maximum of 80% for successful ones. By user class, the beginner group successfully identified 44.6% of slides, the intermediate 56.8% and the advanced 74.3%. Conclusions: Structured as a multi-entry key, IIKC is a powerful database for the morphological identification of female Culicoides from the Western Palaearctic region. First developed for use as an interactive identification key, it was revealed to be a powerful back-up tool for training new taxonomists and to maintain expertise level. The development of tools for arthropod involvement in pathogen transmission will allow clearer insights into the ecology and dynamics of Culicoides and in turn assist in understanding arbovirus epidemiology.

Abstract

Bluetongue (BT) is an important viral disease of ruminants that is transmitted by hematophagous Culicoides midges. We examined the seasonal patterns of abundance and infection of Culicoides sonorensis at four dairy farms in the northern Central Valley of California to develop estimates of risk for bluetongue virus (BTV) transmission to cattle at each farm. These four farms were selected because of their similar meteorological conditions but varying levels of vector abundance and BTV infection of cattle. C. sonorensis midges were collected weekly at each farm during the seasonal transmission period, using three different trapping methods: traps baited with either carbon dioxide (CO2) alone or traps with CO2 and UV light, and by direct aspiration of midges from sentinel cattle. Analysis of BTV-infected midges using group and serotype-specific quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) assays confirmed that ITN serotypes 10, 11, 13 and 17 are all present in the region, but that midge infection rates and the number of BTV serotypes circulating differed markedly among the individual farms. Furthermore, more serotypes of BTV were present in midges than in sentinel cattle at individual farms where BTV circulated, and the virus was detected at each farm in midges prior to detection in cattle. BTV infection rates were remarkably lower among female C. sonorensis midges collected by CO2 traps with UV light than among midges collected by either animal-baited aspirations or in CO2 traps without light. A subsample of female midges examined from each collection method showed no overall differences in the proportion of female midges that had previously fed on a host. Findings from this study confirm the importance of using sensitive surveillance methods for both midge collection and virus detection in epidemiological studies of BTV infection, which is especially critical if the data are to be used for development of mathematical models to predict the occurrence of BTV infection of livestock.
Mediannikov O, Subramanian G, Sekeyova Z, Bell-Sakyi L, Raoult D (2012)

Isolation of Arsenophonus nasoniae from Ixodes ricinus ticks in Slovakia

Ticks and Tick-borne Diseases 3 (5-6), 366-369

Abstract

The tick Ixodes ricinus is the most prevalent and widely distributed tick species in Central Europe, commonly found in woodlands, heaths, and forests and particularly abundant in the Alpine region. This tick readily bites humans and transmits a number of bacterial and viral pathogens. We collected 10 live nymphs of I. ricinus ticks from vegetation in the Rovinka forest, Slovakia, and isolated a strain of Arsenophonus nasoniae from one tick using the BME/CTVM2 cell line. A new isolate was then subcultured on axenic media (Columbia agar supplemented with 5% sheep blood). To the best of our knowledge, this bacterium was never previously isolated from hard ticks or identified in ticks in Europe. We amplified and sequenced the 16S rRNA, rpoB, and ftsY genes. Limited genetic characterization showed that the isolated strain is almost identical to a strain from the parasitic wasp Nasonia vitripennis. Electron microscopy revealed a typical morphology of a Gram-negative bacterium, without pill or flagellae. Its role in human and animal pathology remains to be evaluated.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.