The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 1937 results for your search.
Vinje J, Estes M K, Esteves P, Green K Y, Katayama K, Knowles N J, L'Homme Y, Martella V, Vennema H, White P A, ICTV Report Consortium (2019)

ICTV virus taxonomy profile: Caliciviridae

Journal of General Virology Early view,


The family Caliciviridae includes viruses with single-stranded, positive-sense RNA genomes of 7.4-8.3 kb. The most clinically important representatives are human noroviruses, which are a leading cause of acute gastroenteritis in humans. Virions are non-enveloped with icosahedral symmetry. Members of seven genera infect mammals (Lagovirus, Norovirus, Nebovirus, Recovirus, Sapovirus, Valovirus and Vesivirus), members of two genera infect birds (Bavovirus and Nacovirus), and members of two genera infect fish (Minovirus and Salovirus). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caliciviridae, which is available at

Stedman A, Wright D, Wichgers Schreur P J, Clark M H A, Hill A V S, Gilbert S C, Francis M J, van Keulen L, Kortekaas J, Charleston B, Warimwe G M (2019)

Safety and efficacy of ChAdOx1 RVF vaccine against Rift Valley fever in pregnant sheep and goats

npj Vaccines 4 (1), 44


Rift Valley fever virus (RVFV) is a zoonotic mosquito-borne virus that was first discovered in Kenya in 1930 and has since spread to become endemic in much of Africa and the Arabian Peninsula. Rift Valley fever (RVF) causes recurrent outbreaks of febrile illness associated with high levels of mortality and poor outcomes during pregnancy—including foetal malformations, spontaneous abortion and stillbirths—in livestock, and associated with miscarriage in humans. No vaccines are available for human use and those licensed for veterinary use have potential drawbacks, including residual virulence that may contraindicate their use in pregnancy. To address this gap, we previously developed a simian adenovirus vectored vaccine, ChAdOx1 RVF, that encodes RVFV envelope glycoproteins. ChAdOx1 RVF is fully protective against RVF in non-pregnant livestock and is also under development for human use. Here, we now demonstrate that when administered to pregnant sheep and goats, ChAdOx1 RVF is safe, elicits high titre RVFV neutralizing antibody, and provides protection against viraemia and foetal loss, although this protection is not as robust for the goats. In addition, we provide a description of RVFV challenge in pregnant goats and contrast this to the pathology observed in pregnant sheep. Together, our data further support the ongoing development of ChAdOx1 RVF vaccine for use in livestock and humans.

Schwartz J C, Sanderson N D, Bickhart D M, Smith T P L, Hammond J A (2019)

The structure, evolution, and gene expression within the caprine leukocyte receptor complex

Frontiers in Immunology 10, 2302


The leukocyte receptor complex (LRC) encodes a large number of immunoglobulin (Ig)-like receptors involved in the immune response, particularly in modulating natural killer (NK) cell function. The killer cell Ig-like receptors (KIR), the leukocyte Ig-like receptors (LILR), and a recently described novel Ig-like receptor family are highly variable between species, which is consistent with rapid evolution driven by selection pressure from pathogens. Among the species studied to date, only simians (such as humans) and bovids (such as cattle and goats) have an expanded complement of KIR genes and represent an interesting model to study KIR evolution. Using recently improved genome assemblies and an assembly of bacterial artificial chromosomes, we describe the structure of the LRC, and the KIR region in particular, in goats and compare this to sheep as the assemblies allow. These species diverged from a common ancestor ~10 million years ago and from cattle ~25 million years ago. We identified conserved KIR genes common to both goats and sheep and confirm a partial sheep haplotype shared between the Rambouillet and Texel breeds. Goats and sheep have independently expanded two novel KIR subgroups, and unlike cattle or any other mammal, they do not appear to possess a functional 3DL-lineage KIR gene. Investigation of LRC gene expression using available transcriptomic data for various sheep and goat tissues largely confirmed putative gene annotation and revealed that a relatively conserved caprinae-specific KIR subgroup is expressed in macrophages. The LILR and novel Ig-like receptors were also highly expressed across a diverse range of tissues. This further step toward our understanding of the LRC receptor repertoire will help inform future studies investigating immune response variation in these species.

Ranaweera L T, Wijesundara U K, Jayarathne H S, Knowles N, Wadsworth J, Mioulet V, Adikari J, Weebadde C, Sooriyapathirana S S (2019)

Characterization of the FMDV-serotype-O isolates collected during 1962 and 1997 discloses new topotypes, CEY-1 and WCSA-1, and six new lineages

Scientific Reports 9 (1), 14526


The genetic diversity of the FMD viruses collected from the outbreaks during the second half of the 20(th) Century in Sri Lanka was assessed in the present study. We sequenced the VP1 genomic region of the samples collected during FMDV epidemics caused by serotype O in Sri Lanka during 1962 and 1997. For comparison, we sequenced the VP1 of the related viral isolates collected from other Asian countries. We analyzed the VP1 sequences of the viral strains using the UPGMA method with uncorrected pairwise distances. Nucleotide divergence (ND) thresholds of 15%-20% and 5%-<15% were used to differentiate topotypes and lineages, respectively. We calibrated the divergence times and lineage-specific substitution rates using Bayesian-skyline models. Based on the ND estimations and phylogenetic relationships, we identified and named two new topotypes [CEYLON 1 (CEY-1) and WEST, CENTRAL AND SOUTH ASIA 1 (WCSA-1)] and six new lineages (Syr-62, Srl-77, Tur-69, May-78, Tai-87 and Bur-77) of serotype O. We believe that the novel topotypes and lineages named may have disappeared although they have similar substitution rates for epizootic outbreaks. Because the amino acid selection analysis revealed that the two topotypes and six lineages identified were under purifying selection during the outbreaks.

Montaner-Tarbes S, Pujol M, Jabbar T, Hawes P, Chapman D, Portillo H, Fraile L, Sánchez-Cordón P J, Dixon L, Montoya M (2019)

Serum-derived extracellular vesicles from African swine fever virus-infected pigs selectively recruit viral and porcine proteins

Viruses 11 (10), 882
Publisher’s version:


African swine fever is a devastating hemorrhagic infectious disease, which affects domestic and wild swines (Sus scrofa) of all breeds and ages, with a high lethality of up to 90–100% in naïve animals. The causative agent, African swine fever virus (ASFV), is a large and complex double-stranded DNA arbovirus which is currently spreading worldwide, with serious socioeconomic consequences. There is no treatment or effective vaccine commercially available, and most of the current research is focused on attenuated viral models, with limited success so far. Thus, new strategies are under investigation. Extracellular vesicles (EVs) have proven to be a promising new vaccination platform for veterinary diseases in situations in which conventional approaches have not been completely successful. Here, serum extracellular vesicles from infected pigs using two different ASFV viruses (OURT 88/3 and Benin ΔMGF), corresponding to a naturally attenuated virus and a deletion mutant, respectively, were characterized in order to determine possible differences in the content of swine and viral proteins in EV-enriched fractions. Firstly, EVs were characterized by their CD5, CD63, CD81 and CD163 surface expression. Secondly, ASFV proteins were detected on the surface of EVs from ASFV-infected pig serum. Finally, proteomic analysis revealed few specific proteins from ASFV in the EVs, but 942 swine proteins were detected in all EV preparations (negative controls, and OURT 88/3 and Benin ΔMGF-infected preparations). However, in samples from OURT 88/3-infected animals, only a small number of proteins were differentially identified compared to control uninfected animals. Fifty-six swine proteins (Group Benin) and seven proteins (Group OURT 88/3) were differentially detected on EVs when compared to the EV control group. Most of these were related to coagulation cascades. The results presented here could contribute to a better understanding of ASFV pathogenesis and immune/protective responses in the host.

Maccari G, Robinson J, Hammond J A, Marsh S G E (2019)

The IPD Project: a centralised resource for the study of polymorphism in genes of the immune system

Immunogenetics Early view,


The Immuno Polymorphism Database (IPD),, is a set of specialist databases that enable the study of polymorphic genes which function as part of the vertebrate immune system. The major focus is on the hyperpolymorphic major histocompatibility complex (MHC) genes and the killer-cell immunoglobulin-like receptor (KIR) genes, by providing the official repository and primary source of sequence data. Databases are centred around humans as well as animals important for food security, for companionship and as disease models. The IPD project works with specialist groups or nomenclature committees who provide and manually curate individual sections before they are submitted for online publication. To reflect the recent advance of allele sequencing technologies and the increasing demands of novel tools for the analysis of genomic variation, the IPD project is undergoing a progressive redesign and reorganisation. In this review, recent updates and future developments are discussed, with a focus on the core concepts to better future-proof the project.

Dorey-Robinson D L W, Fernandez de Marco M, Hernandez-Triana L M, Folly A J, McElhinney L M, Stokes J E, Sanders C, Carpenter S, Fooks A R, Zalesky O, Gelman B, Erster O, Johnson N (2019)

Complete genome sequence of a bovine ephemeral fever virus isolate from Israel

Microbiology Resource Announcements 8 (41), e00822-19


Here, we report the first complete genome of a bovine ephemeral fever virus (BEFV) isolate from an infected bovine in Israel. The genome shares 95.3% identity with a Turkish genomic sequence but contains alpha3 and gamma open reading frames that are truncated compared to those of existing BEFV genome sequences.

Dinan A M, Keep S, Bickerton E, Britton P, Firth A E, Brierley I (2019)

Comparative analysis of gene expression in virulent and attenuated strains of infectious bronchitis virus at subcodon resolution

Journal of Virology 93 (18), e00714-19


Like all coronaviruses, avian infectious bronchitis virus (IBV) possesses a long, single-stranded, positive-sense RNA genome ( approximately 27 kb) and has a complex replication strategy that includes the production of a nested set of subgenomic mRNAs (sgmRNAs). Here, we used whole-transcriptome sequencing (RNASeq) and ribosome profiling (RiboSeq) to delineate gene expression in the IBV M41-CK and Beau-R strains at subcodon resolution. RNASeq facilitated a comparative analysis of viral RNA synthesis and revealed two novel transcription junction sites in the attenuated Beau-R strain, one of which would generate a sgmRNA encoding a ribosomally occupied open reading frame (dORF) located downstream of the nucleocapsid coding region. RiboSeq permitted quantification of the translational efficiency of virus gene expression and identified, for the first time, sites of ribosomal pausing on the genome. Quantification of reads flanking the programmed ribosomal frameshifting (PRF) signal at the genomic RNA ORF1a/ORF1b junction revealed that PRF in IBV is highly efficient (33 to 40%). Triplet phasing of RiboSeq data allowed precise determination of reading frames and revealed the translation of two ORFs (ORF4b and ORF4c on sgmRNA IR), which are widely conserved across IBV isolates. Analysis of differential gene expression in infected primary chick kidney cells indicated that the host cell response to IBV occurs primarily at the level of transcription, with global upregulation of immune-related mRNA transcripts following infection and comparatively modest changes in the translation efficiencies of host genes. Cellular genes and gene networks differentially expressed during virus infection were also identified, giving insights into the host cell response to IBV infection. IMPORTANCE IBV is a major avian pathogen and presents a substantial economic burden to the poultry industry. Improved vaccination strategies are urgently needed to curb the global spread of this virus, and the development of suitable vaccine candidates will be aided by an improved understanding of IBV molecular biology. Our high-resolution data have enabled a precise study of transcription and translation in cells infected with both pathogenic and attenuated forms of IBV and expand our understanding of gammacoronaviral gene expression. We demonstrate that gene expression shows considerable intraspecies variation, with single nucleotide polymorphisms being associated with altered production of sgmRNA transcripts, and our RiboSeq data sets enabled us to uncover novel ribosomally occupied ORFs in both strains. The numerous cellular genes and gene networks found to be differentially expressed during virus infection provide insights into the host cell response to IBV infection.

de Groot N G, Otting N, Maccari G, Robinson J, Hammond J A, Blancher A, Lafont B A P, Guethlein L A, Wroblewski E E, Marsh S G E, Shiina T, Walter L, Vigilant L, Parham P, O’Connor D H, Bontrop R E (2019)

Nomenclature report 2019: major histocompatibility complex genes and alleles of great and small ape and Old and New World monkey species

Immunogenetics Early view,


The major histocompatibility complex (MHC) is central to the innate and adaptive immune responses of jawed vertebrates. Characteristic of the MHC are high gene density, gene copy number variation, and allelic polymorphism. Because apes and monkeys are the closest living relatives of humans, the MHCs of these non-human primates (NHP) are studied in depth in the context of evolution, biomedicine, and conservation biology. The Immuno Polymorphism Database (IPD)-MHC NHP Database (IPD-MHC NHP), which curates MHC data of great and small apes, as well as Old and New World monkeys, has been upgraded. The curators of the database are responsible for providing official designations for newly discovered alleles. This nomenclature report updates the 2012 report, and summarizes important nomenclature issues and relevant novel features of the IPD-MHC NHP Database.

Canini L, Everett H E, Aramouni M, Coward V, Ramsay A, Kelly M, Morgan S, Tchilian E, Gilbert S, Charleston B, Brown I H, Brookes S M, Woolhouse M E J (2019)

Statistical modelling of data showing pandemic H1N1 2009 swine influenza a virus infection kinetics in vaccinated pigs

Data in Brief 27, 104576


A swine influenza A pandemic 2009 H1N1 (pH1N1) virus was used in a pig challenge model to investigate the efficacy of whole inactivated vaccines homologous or heterologous to the challenge virus as well as a commercial vaccine. Nasal shedding of viral RNA was monitored daily by real-time, quantitative RT-PCR (RRT-qPCR) as detailed (1). Here we report the statistical modelling of the viral RNA shedding kinetics.


Filter Publications

Trim content

® The Pirbright Institute 2019 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.