Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2071 results for your search.

Abstract

Viruses must hijack cellular translation machinery to express viral genes. In many cases, this is impeded by cellular stress responses. These stress responses result in the global inhibition of translation and the storage of stalled mRNAs, into RNA-protein aggregates called stress granules. This results in the translational silencing of the majority of mRNAs excluding those beneficial for the cell to resolve the specific stress. For example, the expression of antiviral factors is maintained during viral infection. Here we investigated stress granule regulation by Gammacoronavirus infectious bronchitis virus (IBV), which causes the economically important poultry disease, infectious bronchitis. Interestingly, we found that IBV is able to inhibit multiple cellular stress granule signaling pathways, whilst at the same time, IBV replication also results in the induction of seemingly canonical stress granules in a proportion of infected cells. Moreover, IBV infection uncouples translational repression and stress granule formation and both processes are independent of eIF2α phosphorylation. These results provide novel insights into how IBV modulates cellular translation and antiviral stress signaling.

Abstract

Pooled milk is used for the surveillance of several diseases of livestock. Previous studies demonstrated the detection of foot-and-mouth disease virus (FMDV) in the milk of infected animals at high dilutions, and consequently, the collection of pooledmilk samples could be used to enhance FMD surveillance. This study evaluated pooled milk for FMDV surveillance on a large-scale dairy farm that experienced two FMD outbreaks caused by the A/ASIA/G-VII and O/ME-SA/Ind-2001d lineages, despite regular vaccination and strict biosecurity practices. FMDV RNA was detected in 42 (5.7%) of the 732 pooled milk samples, and typing information was concordant with diagnostic reports of clinical disease. The FMDV positive milk samples were temporally clustered around reports of new clinical cases, but with a wider distribution. For further investigation, a model was established to predict real-time RT-PCR (rRT-PCR) CT values using individual cattle movement data, clinical disease records and virus excretion data from previous experimental studies. The model explained some of the instances where there were positive results by rRT-PCR, but no new clinical cases and suggested that subclinical infection occurred during the study period. Further studies are required to investigate the effect of vaccination on FMDV excretion in milk, and to evaluate more representative sampling methods. However, the results from this pilot study indicate that testing pooled milk by rRT-PCR may be valuable for FMD surveillance and has provided evidence of subclinical virus infection in vaccinated herds that could be important in the epidemiology of FMD in endemic countries where vaccination is used.

Pascall D J, Nomikou K, Breard E, Zientara S, Filipe A D S, Hoffmann B, Jacquot M, Singer J B, De Clercq K, Botner A, Sailleau C, Viarouge C, Batten C, Puggioni G, Ligios C, Savini G, van Rijn P A, Mertens P P C, Biek R, Palmarini M (2020)

Frozen evolution of an RNA virus suggests accidental release as a potential cause of arbovirus re-emergence

PLoS Biology 18 (4), e3000673

Abstract

The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. Bluetongue virus serotype 8 (BTV-8), an arthropod-borne virus of ruminants, emerged in livestock in northern Europe in 2006, spreading to most European countries by 2009 and causing losses of billions of euros. Although the outbreak was successfully controlled through vaccination by early 2010, puzzlingly, a closely related BTV-8 strain re-emerged in France in 2015, triggering a second outbreak that is still ongoing. The origin of this virus and the mechanisms underlying its re-emergence are unknown. Here, we performed phylogenetic analyses of 164 whole BTV-8 genomes sampled throughout the two outbreaks. We demonstrate consistent clock-like virus evolution during both epizootics but found negligible evolutionary change between them. We estimate that the ancestor of the second outbreak dates from the height of the first outbreak in 2008. This implies that the virus had not been replicating for multiple years prior to its re-emergence in 2015. Given the absence of any known natural mechanism that could explain BTV-8 persistence over this long period without replication, we hypothesise that the second outbreak could have been initiated by accidental exposure of livestock to frozen material contaminated with virus from approximately 2008. Our work highlights new targets for pathogen surveillance programmes in livestock and illustrates the power of genomic epidemiology to identify pathways of infectious disease emergence.

Abstract

The virus-encoded microRNAs (miRNAs) have been demonstrated to have important regulatory roles in herpesvirus biology, including virus replication, latency, pathogenesis and/or tumorigenesis. As an emerging efficient tool for gene editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has been successfully applied in manipulating the genomes of large DNA viruses. Herein, utilizing the CRISPR/Cas9 system with a double-guide RNAs transfection/virus infection strategy, we have established a new platform for mutagenesis of viral miRNAs encoded by the Marek's disease virus serotype 1 (MDV-1), an oncogenic alphaherpesvirus that can induce rapid-onset T-cell lymphomas in chickens. A series of miRNA-knocked out (miR-KO) mutants with deletions of the Meq- or the mid-clustered miRNAs, namely RB-1B∆Meq-miRs, RB-1B∆M9-M2, RB-1B∆M4, RB-1B∆M9 and RB-1B∆M11, were generated from vvMDV strain RB-1B virus. Interestingly, mutagenesis of the targeted miRNAs showed changes in the in vitro virus growth kinetics, which is consistent with that of the in vivo proliferation curves of our previously reported GX0101 mutants produced by the bacterial artificial chromosome (BAC) clone and Rec E/T homologous recombination techniques. Our data demonstrate that the CRISPR/Cas9-based gene editing is a simple, efficient and relatively nondisruptive approach for manipulating the small non-coding genes from the genome of herpesvirus and will undoubtedly contribute significantly to the future progress in herpesvirus biology.

Abstract

When rinderpest virus (RPV) was declared eradicated in 2011, the only remaining samples of this once much-feared livestock virus were those held in various laboratories. In order to allow the destruction of our institute's stocks of RPV while maintaining the ability to recover the various viruses if ever required, we have determined the full genome sequence of all our distinct samples of RPV, including 51 wild type viruses and examples of three different types of vaccine strain. Examination of the sequences of these virus isolates has shown that the African isolates form a single disparate clade, rather than two separate clades, which is more in accord with the known history of the virus in Africa. We have also identified two groups of goat-passaged viruses which have acquired an extra 6 bases in the long untranslated region between the M and F protein coding sequences, and shown that, for more than half the genomes sequenced, translation of the F protein requires translational frameshift or non-standard translation initiation. Curiously, the clade containing the lapinised vaccine viruses that were developed originally in Korea appears to be more similar to the known African viruses than to any other Asian viruses.

Abstract

Real-time PCR (rPCR) is a widely accepted diagnostic tool for the detection and quantification of nucleic acid targets. In order for these assays to achieve high sensitivity and specificity, primer and probe-template complementarity is essential; however, mismatches are often unavoidable and can result in false-negative results and errors in quantifying target sequences. Primer and probe sequences therefore require continual evaluation to ensure they remain fit for purpose. This paper describes the development of a linear model and associated computational tool (GoPrime) designed to predict the performance of rPCR primers and probes across multiple sequence data. Empirical data were generated using DNA oligonucleotides (n = 90) that systematically introduced variation in the primer and probe target regions of a diagnostic assay routinely used to detect foot-and-mouth disease virus (FMDV); an animal virus that exhibits a high degree of sequence variability. These assays revealed consistent impacts of patterns of substitutions in primer and probe-sites on rPCR cycle threshold (CT) and limit of detection (LOD). These data were used to populate GoPrime, which was subsequently used to predict rPCR results for DNA templates (n = 7) representing the natural sequence variability within FMDV. GoPrime was also applicable to other areas of the FMDV genome, with predictions for the likely targets of a FMDV-typing assay consistent with published experimental data. Although further work is required to improve these tools, including assessing the impact of primer-template mismatches in the reverse transcription step and the broader impact of mismatches for other assays, these data support the use of mathematical models for rapidly predicting the performance of rPCR primers and probes in silico.

Hicks H M, Wadsworth J, Azhar M, Afzal M, Manzoor S, Abubakar M, Khan E-u-H, King D P, Knowles N J (2020)

Genome sequences of foot-and-mouth disease virus O/ME-SA/Ind-2001e strains isolated in Pakistan

Microbiology Resource Announcements 9 (18), e00165-20

Abstract

The genome sequences of two foot-and-mouth disease type O viruses isolated from outbreaks of disease in cattle in Pakistan in 2019 are described. They were identified as belonging to serotype O, Middle East-South Asia topotype, Ind-2001 lineage, and e sublineage and represent the first identification of this lineage in Pakistan.

Abstract

Here, we report the coding-complete genome sequence of African swine fever (ASF) virus strain Liv13/33, isolated from experimentally infected pigs and Ornithodoros moubata ticks. The 11 sequences that we obtained harbored no notable differences to each other, and all of them were closely related to the genome sequence of the Mkuzi 1979 strain of genotype I.

Abstract

The Birnaviridae family, responsible for major economic losses to poultry and aquaculture, are non-enveloped viruses with a segmented double-stranded (ds)RNA genome that replicate in discrete cytoplasmic virus factories (VFs). Reassortment is common, however, the underlying mechanism remains unknown given that VFs may act as a barrier to genome mixing. In order to provide new information on VF trafficking during dsRNA virus co-infection, we rescued two recombinant infectious bursal disease viruses (IBDVs) of strain PBG98 containing either a split GFP11- or Tetracysteine (TC)- tag fused to the VP1 polymerase (PBG98-VP1-GFP11 and PBG98-VP1-TC). DF-1 cells transfected with GFP1-10 prior to PBG98-VP1-GFP11 infection, or stained with ReAsH following PBG98-VP1-TC infection, had green or red foci in the cytoplasm respectively that co-localised with VP3 and dsRNA, consistent with VFs. The average number of VFs decreased from a mean of 60 to 5 per cell between 10 and 24 hours post infection (hpi) (p<0.0001), while the average area increased from 1.24 μm(2) to 45.01μm(2) (p<0.0001), and live cell imaging revealed that the VFs were highly dynamic structures that coalesced in the cytoplasm. Small VFs moved faster than large (average 0.57μm/s at 16 hpi compared to 0.22 μm/s at 22 hpi), and VF coalescence was dependent on an intact microtubule network and actin cytoskeleton. During co-infection with PBG98-VP1-GFP11 and PBG98-VP1-TC viruses, discrete VFs initially formed from each input virus that subsequently coalesced 10-16 hpi, and we speculate that Birnaviridae reassortment requires VF coalescence.

IMPORTANCE Reassortment is common in viruses with segmented double stranded (ds)RNA genomes. However, these viruses typically replicate within discrete cytoplasmic virus factories (VFs) that may represent a barrier to genome mixing. We generated the first replication competent tagged reporter birnaviruses, infectious bursal disease viruses (IBDVs) containing a split GFP11 or tetracysteine (TC) tag and used the viruses to track the location and movement of IBDV VFs, in order to better understand the intracellular dynamics of VFs during a co-infection. Discrete VFs initially formed from each virus that subsequently coalesced from 10 hours pi. We hypothesise that VF coalescence is required for the reassortment of the Birnaviridae. This study provides new information that adds to our understanding of dsRNA virus VF trafficking.

Abstract

Infectious diseases are typically studied in isolation, but in real life people often encounter multiple infections simultaneously. Here we investigate how the innate immune response to the fatal fungus Cryptococcus neoformans is influenced by viral coinfection. Whilst virally-infected macrophages retain a normal capacity to engulf and kill Cryptococci, they demonstrate a dramatically enhanced propensity to expel them through vomocytosis. Activation of vomocytosis is driven by type-I interferons, generic ‘antiviral’ molecules, which signal back to the infected macrophage, triggering expulsion of the fungus. We propose that this hitherto unobserved phenomenon represents a ‘reprioritisation’ pathway for innate immune cells, by which they can alter the frequency with which they expel one pathogen depending on the level of threat from a secondary infection.            

Pages

Filter Publications

Trim content

® The Pirbright Institute 2020 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.