Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2609 results for your search.

Abstract

Marek's disease virus (MDV) induces immunosuppression and neoplastic disease in chickens. The virus is controllable via an attenuated meq deletion mutant virus, which has the disadvantage of retaining the ability to induce lymphoid organ atrophy. To overcome this deficiency and produce more vaccine candidates, a recombinant MDV was generated from the highly virulent Md5BAC strain, in which both meq and a cytolytic replication-related gene, pp38, were deleted. Replication of the double deletion virus, Md5BAC ΔmeqΔpp38, was comparable with that of the parental virus in vitro. The double deletion virus was shown to be fully attenuated and to reduce lymphoid organ atrophy in vivo. Crucially, Md5BAC ΔmeqΔpp38 confers superior protection against highly virulent virus compared with a commercial vaccine strain, CVI988/Rispens. Transcriptomic profiling indicated that Md5BAC ΔmeqΔpp38 induced a different host immune response from CVI988/Rispens. In summary, a novel, effective, and safe vaccine candidate for prevention and control of MD caused by highly virulent MDV is reported.

Abstract

Turkey herpesvirus (HVT) is widely used as an effective recombinant vaccine vector for expressing protective antigens of multiple avian pathogens from different loci of the HVT genome. These include the HVT029/031 (UL22–23) locus for the insertion of IBDV VP2 and the recently identified HVT005/006 locus as a novel site for expressing heterologous proteins. In order to compare the efficacy of recombinant vaccines with the HA gene at different sites, the growth curves and the HA expression levels of HVT-005/006-hCMV-HA, HVT-005/006-MLV-HA, and HVT-029/031-MLV-HA were first examined in vitro. While the growth kinetics of three recombinant viruses were not significantly different from those of parent HVT, higher expression of the HA gene was achieved from the HVT005/006 site than that from the HVT029/031 site. The efficacy of the three recombinant viruses against avian influenza H9N2 virus was also evaluated using one-day-old SPF chickens. Chickens immunized with HVT-005/006-MLV-HA or HVT-005/006-hCMV-HA displayed reduced virus shedding compared to HVT-029/031-MLV-HA vaccinated chickens. Moreover, the overall hemagglutination inhibition (HI) antibody titers of HVT-005/006-HA-vaccinated chickens were higher than that of HVT-029/031-HA-vaccinated chickens. However, HVT-005/006-MLV-HA and HVT-005/006-hCMV-HA did not result in a significant difference in the level of HA expression in vitro and provided the same protective efficacy (100%) at 5 days after challenge. In the current study, the results suggested that recombinant HVT005/006 vaccines caused better expression of HA than recombinant HVT029/031 vaccine, and that HVT-005/006-MLV-HA or HVT-005/006-hCMV-HA could be a candidate vaccine for the protection of chickens against H9N2 influenza.

James, J, Bhat, S, Walsh, SK, Karunarathna, TK, Sadeyen, J-R, Chang, P, Sealy, JE, Mahmood, S, Mollett, BC, Slomka, MJ, Brookes, SM and Iqbal, M (2022)

The origin of internal genes contributes to the replication and transmission fitness of H7N9 avian influenza virus

Journal of Virology

Abstract

H9N2 avian influenza viruses (AIVs) have donated internal gene segments during the emergence of zoonotic AIVs, including H7N9. We used reverse genetics to generate A/Anhui/1/13 (H7N9) and three reassortant viruses (2:6 H7N9) which contained the hemagglutinin and neuraminidase from Anhui/13 (H7N9) and the six internal gene segments from H9N2 AIVs belonging to (i) G1 subgroup 2, (ii) G1 subgroup 3, or (iii) BJ94 lineages, enzootic in different regions throughout Asia. Infection of chickens with the 2:6 H7N9 containing G1-like H9N2 internal genes conferred attenuation in vivo, with reduced shedding and transmission to contact chickens. However, possession of BJ94-like H9N2 internal genes resulted in more rapid transmission and significantly elevated cloacal shedding compared to the parental Anhui/13 H7N9. In vitro analysis showed that the 2:6 H7N9 with BJ94-like internal genes had significantly increased replication compared to the Anhui/13 H7N9 in chicken cells. In vivo coinfection experiments followed, where chickens were coinfected with pairs of Anhui/13 H7N9 and a 2:6 H7N9 reassortant. During ensuing transmission events, the Anhui/13 H7N9 virus outcompeted 2:6 H7N9 AIVs with internal gene segments of BJ94-like or G1-like H9N2 viruses. Coinfection did lead to the emergence of novel reassortant genotypes that were transmitted to contact chickens. Some of the reassortant viruses had a greater replication in chicken and human cells compared to the progenitors. We demonstrated that the internal gene cassette determines the transmission fitness of H7N9 viruses in chickens, and the reassortment events can generate novel H7N9 genotypes with increased virulence in chickens and enhanced zoonotic potential.

Yilmaz, A, Turan, N, Kocazeybek, BS, Dinc, HO, Tali, HE, Aydin, O, Tali, HB, Yilmaz, SG, Konukoglu, D, Borekci, S, Bold, D, Roman Sosa, G, Gungordu, N, Vardaloglu, I, Gareayaghi, N, Guzel, M, Guner, E, Sadeyen, J-R, Chang, P, Iqbal, M, Richt, JA and Yilmaz, H (2022)

Development of in house ELISAs to detect antibodies to SARS-CoV-2 in infected and vaccinated humans by using recombinant S, S1 and RBD proteins

Diagnostics 12 (12), 3085

Abstract

Background: The aim of this study was to produce in-house ELISAs which can be used to determine SARS-CoV-2-specific antibody levels directed against the spike protein (S), the S1 subunit of S and the receptor binding domain (RBD) of S in SARS-CoV-2 vaccinated and infected humans. (2) Methods: Three in-house ELISAs were developed by using recombinant proteins of SARS-CoV-2, namely the S, S1 and RBD proteins. Specificity and sensitivity evaluations of these tests were performed using sera from SARS-CoV-2-infected (n = 70) and SARS-CoV-2-vaccinated (n = 222; CoronaVac vaccine) humans in Istanbul, Turkey. The analyses for the presence of SARS-CoV-2-specific antibodies were performed using the in-house ELISAs, a commercial ELISA (Abbott) and a commercial surrogate virus neutralization test (sVNT). We also analyzed archival human sera (n = 50) collected before the emergence of COVID-19 cases in Turkey. (3) Results: The sensitivity of the in-house S, S1 and RBD ELISAs was found to be 88.44, 90.17 and 95.38%, while the specificity was 72.27, 89.08 and 89.92%, respectively, when compared to the commercial SARS-CoV-2 antibody test kit. The area under curve (AUC) values were 0.777 for the in-house S ELISA, 0.926 for the S1 ELISA, and 0.959 for the RBD ELISA. The kappa values were 0.62, 0.79 and 0.86 for the S, S1 and RBD ELISAs, respectively. (4) Conclusions: The in-house S1 and RBD ELISAs developed in this study have acceptable performance characteristics in terms of sensitivity, specificity, AUC and kappa values. In particular, the RBD ELISA seems viable to determine SARS-CoV-2-specific antibody levels, both in infected and vaccinated people, and help mitigate SARS-CoV-2 outbreaks and spread.

Gubbins, S, Paton, DJ, Dekker, A, Ludi, AB, Wilsden, G, Browning, CFJ, Eschbaumer, M, Barnabei, J, Duque, H, Pauszek, LL and King, DP (2022)

Predicting cross-protection against foot-and-mouth disease virus strains by serology after vaccination

Frontiers in Veterinary Science 9, 1027006

Abstract

Serology is widely used to predict whether vaccinated individuals and populations will be protected against infectious diseases, including foot-and-mouth disease (FMD), which affects cloven-hoofed animals. Neutralising antibody titres to FMD challenge viruses correlate to protection against FMD, for vaccinated cattle that are infected with the same strain as in the vaccine (homologous protection). Similar relationships exist for cross-strain protection between different vaccine and challenge viruses, although much less data are available for these heterologous studies. Poor inter-laboratory reproducibility of the virus neutralisation test (VNT) also hampers comparisons between studies. Therefore, day-of-challenge sera (n = 180) were assembled from 13 previous FMD cross-protection experiments for serotypes O (n = 2), A (n = 10), and SAT 2 (n = 1). These were tested by VNT against the challenge viruses at the FMD FAO World Reference Laboratory (WRLFMD) and the titres were compared to challenge outcomes (protected or not). This dataset was combined with equivalent serology and protection data for 61 sera from four cross-protection experiments carried out at WRLFMD for serotypes O (n = 2), A (n = 1), and Asia 1 (n = 1). VNT results and protection outcomes were also analysed for a serotype O cross-protection experiment involving 39 cattle, where the sera were not available for retesting at WRLFMD. Three categories of association between heterologous neutralising antibody titre and heterologous protection were found (Group 1-3). The log(10) reciprocal titres associated on average with 75% protection (with 95% credible limits) were: Group 1: 2.46 (2.11-2.97); Group 2: 1.67 (1.49-1.92); Group 3: 1.17 (1.06-1.30). Further cross-protection data are needed to understand the factors that underpin this variability and to develop more robust antibody thresholds. Establishing cut-off serological titres that can be used to score the adequacy of vaccine-induced immunity will facilitate the monitoring and thereby the performance of FMD vaccination in the field.

Fay, PC, Wijesiriwardana, N, Munyanduki, H, Sanz-Bernardo, B, Lewis, I, Haga, IR, Moffat, K, van Vliet, AHM, Hope, J, Graham, SP and Beard, PM (2022)

The immune response to lumpy skin disease virus in cattle is influenced by inoculation route

Frontiers in Immunology 13, 1051008

Abstract

Lumpy skin disease virus (LSDV) causes severe disease in cattle and water buffalo and is transmitted by hematophagous arthropod vectors. Detailed information of the adaptive and innate immune response to LSDV is limited, hampering the development of tools to control the disease. This study provides an in-depth analysis of the immune responses of calves experimentally inoculated with LSDV via either needle-inoculation or arthropod-inoculation using virus-positive Stomoxys calcitrans and Aedes aegypti vectors. Seven out of seventeen needle-inoculated calves (41%) developed clinical disease characterised by multifocal necrotic cutaneous nodules. In comparison 8/10 (80%) of the arthropod-inoculated calves developed clinical disease. A variable LSDV-specific IFN-gamma immune response was detected in the needle-inoculated calves from 5 days post inoculation (dpi) onwards, with no difference between clinical calves (developed cutaneous lesions) and nonclinical calves (did not develop cutaneous lesions). In contrast a robust and uniform cell-mediated immune response was detected in all eight clinical arthropod-inoculated calves, with little response detected in the two nonclinical arthropod-inoculated calves. Neutralising antibodies against LSDV were detected in all inoculated cattle from 5-7 dpi. Comparison of the production of anti-LSDV IgM and IgG antibodies revealed no difference between clinical and nonclinical needle-inoculated calves, however a strong IgM response was evident in the nonclinical arthropod-inoculated calves but absent in the clinical arthropod-inoculated calves. This suggests that early IgM production is a correlate of protection in LSD. This study presents the first evidence of differences in the immune response between clinical and nonclinical cattle and highlights the importance of using a relevant transmission model when studying LSD.

Verkuijl, SAN, Gonzalez, E, Li, M, Ang, JXD, Kandul, NP, Anderson, MAE, Akbari, OS, Bonsall, MB and Alphey, L (2022)

A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias

Nature Communications 13 (1), 7145

Abstract

CRISPR/Cas gene drives can bias transgene inheritance through different mechanisms. Homing drives are designed to replace a wild-type allele with a copy of a drive element on the homologous chromosome. In Aedes aegypti, the sex-determining locus is closely linked to the white gene, which was previously used as a target for a homing drive element (w(GDe)). Here, through an analysis using this linkage we show that in males inheritance bias of w(GDe) did not occur by homing, rather through increased propagation of the donor drive element. We test the same w(GDe) drive element with transgenes expressing Cas9 with germline regulatory elements sds3, bgcn, and nup50. We only find inheritance bias through homing, even with the identical nup50-Cas9 transgene. We propose that DNA repair outcomes may be more context dependent than anticipated and that other previously reported homing drives may, in fact, bias their inheritance through other mechanisms.

Abstract

African swine fever virus (ASFV) causes a haemorrhagic disease affecting wild boar and domestic pigs which can result in morbidity and fatality rates of up to 100%. ASFV is a large double-stranded DNA virus which replicates predominantly in the cell cytoplasm and codes for its replication and transcription machinery. No vaccine is available and control depends on early detection, culling of infected herds and adherence to biosecurity measures. In this study the small molecule nucleoside analogue, cyclic cidofovir (cHPMPC), was evaluated for its ability to inhibit replication of four different ASFV genotypes in primary porcine macrophages. Time of addition studies demonstrated that cHPMPC effectively inhibits ASFV replication and late gene expression when added pre-infection or early post-infection but not when added at late times, suggesting the drug target may be the virus DNA polymerase, or the RNA polymerase involved in late transcription. Oral administration of cHPMPC delayed onset of clinical signs and significantly reduced viral titres in blood and tissues of treated pigs. These results indicate that cHPMPC is a promising compound for further development to control ASFV outbreaks.

Abstract

Toll-like receptor 2 (TLR2) ligands are attracting attention as prophylactic and immunopotentiator agents against pathogens, including viruses. We previously reported that a synthetic diacylated lipopeptide (Mag-Pam2Cys_P48) polarized porcine macrophages towards a proinflammatory antimicrobial phenotype. Here, we investigated its role in modulating monocyte-derived macrophage (moM?) responses against African swine fever virus (ASFV), the etiological agent of one of the greatest threats to the global pig industry. Two ASFV isolates were compared: the attenuated NH/P68 and the virulent 26544/OG10. No effect on virus infection nor the modulation of surface markers expression (MHC I, MHC II DR, CD14, CD16, and CD163) were observed when Mag-Pam2Cys_P48 treated moM? were infected using a multiplicity of infection (MOI) of 1. Mag-Pam2Cys_P48 treated moMΦ released higher levels of IL-1α, IL-1β, IL-1Ra, and IL-18 in response to infection with NH/P68 ASFV compared to 26544/OG10-infected and mock-infected controls. Surprisingly, when infected using a MOI of 0.01, the virulent ASFV 26544/OG10 isolate replicated even slightly more efficiently in Mag-Pam2Cys_P48 treated moMΦ. These effects also extended to the treatment of moM? with two other lipopeptides: Mag-Pam2Cys_P80 and Mag-Pam2Cys_Mag1000. Our data suggested limited applicability of TLR2 agonists as prophylactic or immunopotentiator agents against virulent ASFV but highlighted the ability of the virulent 26544/OG10 to impair macrophage defenses.

Eid A A M, Hussein A, Hassanin O, Elbakrey R M, Daines R, Sadeyen J-R, Abdien H M F, Chrzastek K, Iqbal M (2022)

Newcastle disease genotype VII prevalence in poultry and wild birds in Egypt

Viruses 14 (10), 2244
Publisher’s version: https://doi.org/10.3390/v14102244

Abstract

Newcastle Disease Virus (NDV) genotype VII is a highly pathogenic Orthoavulavirus that has caused multiple outbreaks among poultry in Egypt since 2011. This study aimed to observe the prevalence and genetic diversity of NDV prevailing in domestic and wild birds in Egyptian governorates. A total of 37 oropharyngeal swabs from wild birds and 101 swabs from domestic bird flocks including chickens, ducks, turkeys, and pelicans, were collected from different geographic regions within 13 governorates during 2019–2020. Virus isolation and propagation via embryonated eggs revealed 91 swab samples produced allantoic fluid containing haemagglutination activity, suggestive of virus presence. The use of RT-PCR targeted to the F gene successfully detected NDV in 85 samples. The geographical prevalence of NDV was isolated in 12 governorates in domestic birds, migratory, and non-migratory wild birds. Following whole genome sequencing, we assembled six NDV genome sequences (70–99% of genome coverage), including five full F gene sequences. All NDV strains carried high virulence, with phylogenetic analysis revealing that the strains belonged to class II within genotype VII.1.1. The genetically similar yet geographically distinct virulent NDV isolates in poultry and a wild bird may allude to an external role contributing to the dissemination of NDV in poultry populations across Egypt. One such contribution may be the migratory behaviour of wild birds; however further investigation must be implemented to support the findings of this study. Additionally, continued genomic surveillance in both wild birds and poultry would be necessary for monitoring NDV dissemination and genetic diversification across Egypt, with the aim of controlling the disease and protecting poultry production.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.