Publications

Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2606 results for your search.

Abstract

Background: The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies. Methodology/Findings: Exposure of midges to 'dry' conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT(50) value for strain V275 was 1.42 days compared to 2.21-3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (10(8)-10(11) conidia m(-2)) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to 'dry' conidia and 'wet' conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. 'Dry' conidia were more effective than 'wet' conidia, causing 100% mortality after 5 days. Conclusion/Significance: This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of 'dry' conidia on surfaces (e. g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges thus reducing the incidence of disease.

Abstract

This paper reports a concatemeric RNA in a strain of epizootic haemorrhagic disease virus (EHDV) serotype 5. Sequencing showed that the concatemeric RNA contains two identical full-length copies of genome segment 9, arranged in series, which has apparently replaced the monomeric form of the segment. In vitro translation demonstrated that the concatemeric RNA can act as a viable template for VP6 translation, but that no double-sized protein is produced. Studies were also performed to assess whether mutations might be easily introduced into the second copy (which might indicate some potential evolutionary significance of a concatemeric RNA segment), however multiple (n = 40) passages generated no changes in the sequence of either the upstream or downstream segments. Further, we present results that demonstrate the presence of concatemers or partial gene duplications in multiple segments of different orbiviruses (in tissue culture and purified virus), suggesting their generation is likely to be a normal feature of orbivirus replication

Abstract

We have shown previously that replacement of the spike (S) gene of the apathogenic IBV strain Beau-R with that from the pathogenic strain of the same serotype, M41, resulted in an apathogenic virus, BeauR-M41(S), that conferred protection against challenge with M41 [1]. We have constructed a recombinant IBV, BeauR-4/91(S), with the genetic backbone of BeauR but expressing the spike protein of the pathogenic IBV strain 4/91(UK), which belongs to a different serogroup as Beaudette or M41. Similar to our previous findings with BeauR-M41(S), clinical signs observations showed that the S gene of the pathogenic 4/91 virus did not confer pathogenicity to the rIBV BeauR-4/91(S). Furthermore, protection studies showed there was homologous protection; BeauR-4/91(S) conferred protection against challenge with wild type 4/91 virus as shown by the absence of clinical signs, IBV RNA assessed by qRT-PCR and the fact that no virus was isolated from tracheas removed from birds primarily infected with BeauR-4/91(S) and challenged with IBV 4/91(UK). A degree of heterologous protection against M41 challenge was observed, albeit at a lower level. Our results confirm and extend our previous findings and conclusions that swapping of the ectodomain of the S protein is a precise and effective way of generating genetically defined candidate IBV vaccines.

Abstract

Investigation into the pathogenesis of foot-and-mouth disease (FMD) has focused on the study of the disease in cattle with less emphasis on pigs, small ruminants and wildlife. 'Atypical' FMD-associated syndromes such as myocarditis, reproductive losses and chronic heat intolerance have also received little attention. Yet, all of these manifestations of FMD are reflections of distinct pathogenesis events. For example, naturally occurring porcinophilic strains and unique virus-host combinations that result in high-mortality outbreaks surely have their basis in molecular-, cellular-and tissue-level interactions between host and virus (i.e. pathogenesis). The goal of this review is to emphasize how the less commonly studied FMD syndromes and host species contribute to the overall understanding of pathogenesis and how extensive in vitro studies have contributed to our understanding of disease processes in live animals.

Abstract

In 1898, foot-and-mouth disease (FMD) earned a place in history as the first disease of animals shown to be caused by a virus. Yet, despite over a century of active investigation and elucidation of many aspects of FMD pathogenesis, critical knowledge about the virus-host interactions is still lacking. The aim of this review is to provide a comprehensive overview of FMD pathogenesis in cattle spanning from the earliest studies to recently acquired insights emphasizing works which describe animals infected by methodologies most closely resembling natural infection (predominantly aerosol or direct/indirect contact). The three basic phases of FMD pathogenesis in vivo will be dissected and characterized as: (i) pre-viraemia characterized by infection and replication at the primary replication site(s), (ii) sustained viraemia with generalization and vesiculation at secondary infection sites and (iii) post-viraemia/convalescence including resolution of clinical disease that may result in long-term persistent infection. Critical evaluation of the current status of understanding will be used to identify knowledge gaps to guide future research efforts.

Abstract

In multiple myeloma (MM), malignant plasma cells reside in the bone marrow, where they accumulate in close contact with stromal cells. The mechanisms responsible for the chemotaxis of malignant plasma cells are still poorly understood. Thus, we investigated the mechanisms involved in the chemotaxis of MDN and XG2 MM cell lines. Both cell lines strongly expressed CCR9, CXCR3 and CXCR4 chemokine receptors but only migrated toward CXCL12. Activation of CXCR4 by CXCL12 resulted in the association of CXCR4 with CD45 and activation of PLC beta 3, AKT, RhoA, I kappa B alpha and ERK1/2. Using siRNA-silencing techniques, we showed CD45/CXCR4 association is essential for CXCL12-induced migration of MM cells. Thymoquinone (TQ), the major active component of the medicinal herb Nigella sativa Linn, has been described as a chemopreventive and chemotherapeutic compound. TQ treatment strongly inhibited CXCL12-mediated chemotaxis in MM cell lines as well as primary cells isolated from MM patients, but not normal PBMCs. Moreover, TQ significantly down-regulated CXCR4 expression and CXCL12-mediated CXCR4/CD45 association in MM cells. Finally, TQ also induced the relocalization of cytoplasmic Fas/CD95 to the membrane of MM cells and increased CD95-mediated apoptosis by 80%. In conclusion, we demonstrate the potent anti-myeloma activity of TQ, providing a rationale for further clinical evaluation.

Abstract

The 'gold standard' vaccine against Marek's disease in poultry is the CVI988/Rispens virus, which is not easily distinguishable, antigenically or genetically, from virulent Marek's disease herpesvirus. Accurate differential measurement of the CVI988 vaccine and virulent viruses is important to investigate mechanisms of vaccinal protection. Minimal sequence differences between CVI988 and virulent MDV strains restrict the application of molecular diagnostic methods such as real-time PCR to distinguish between these viruses. The use of bacterial-artificial-chromosome (BAC) cloned CVI988 virus, which carries the BAC vector sequences in place of the U(s)2 gene, allows its differential quantification from virulent strains using real-time PCR assays that target the BAC vector sequence and the U(s)2 gene respectively. These novel assays allowed investigation of replication of both serotype-1 vaccine virus (cloned CVI988) and challenge virus (RB-1B strain) in tissues of individual chickens in an experimental vaccination-challenge model of Marek's disease.

Abstract

Using genetic immunisation of mice, we produced antibodies against chicken interleukin-12p40 (chIL-12p40), also known as IL-12 beta. After a final injection with a recombinant chIL-12p40 protein, several stable hybridoma cell lines were established which secreted monoclonal antibodies (mAbs) to this component of the heterodimeric IL-12 cytokine. Specific binding of three of the mAbs to COS-7 cell-derived recombinant chIL-12p40 and the chIL-12p70 heterodimer was demonstrated in an indirect ELISA, and in dot blots. Two of the mAbs were used to develop a capture ELISA, suitable for detecting both recombinant protein (chIL-12p40 and the heterodimeric p70 protein) and native chIL-12. The mAbs were further characterised to show utility in immunocytochemistry.

Abstract

Morbillivirus infection of marine mammals has been documented across all of the world's oceans. Whilst infection is generally demonstrated using a variety of histopathological and serological techniques, where possible, the use of molecular techniques is being used to enable accurate genetic typing of virus strains through sequence analysis. Here, we present genetic data from dolphins and pilot whales affected by morbillivirus infection in the recent outbreak in the Mediterranean Sea during a six-month period from the end of October 2006 to April 2007. To date, very few studies have looked at characterizing outbreaks of morbillivirus infections in whale species at the molecular level. Here, we provide a full sequence for the haemagglutinin (H) gene from material derived from both a dolphin and a pilot whale from the 2007 outbreak in the Mediterranean Sea and show this virus to be 100% identical across the region analysed. Furthermore, we compare partial sequence data from the nucleocapsid (N) gene of the pilot whale material with previously published data and show evidence for strong protein conservation between these different isolates. Finally, we discuss the current classification of cetacean morbilliviruses as a single species.
Baron M D (2011)

Rinderpest and peste des petits ruminants viruses

The Biology of Paramyxoviruses (edited by S. K. Samal, Caister Academic Press), 293-339

Abstract

In terms of their impact on livestock, and therefore on human well-being and development, rinderpest virus (RPV) and peste des petits ruminants virus (PPRV) are two of the most important members of the paramyxovirus family. RPV, the cause of the most feared of all cattle diseases, now appears to have been eradicated; however, over the past 20 years, PPRV has increased its global distribution through most of sub-Saharan and North Africa, the Middle East, the Indian sub-continent and eastwards into Tibet. While most scientific effort has been focused on developing means of control of the diseases, effort in a small number of laboratories has thrown light on the detailed molecular biology of the viruses, providing information on those areas in which they are the same as, or differ from, other members of the same genus. Such findings have highlighted how important it is to understand the way that these viruses are restricted in the range of organisms in which they will cause disease, an understanding that will become increasingly important with the success in eradicating these diseases on a local and global level.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.