Publications

Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2607 results for your search.

Abstract

This report describes the use of Bayesian methods to analyze polyprotein coding region sequences (n = 217) obtained from GenBank to define the genome-wide phylogeny of foot and mouth disease virus (FMDV). The results strongly supported the monophyly of five FMDV serotypes, O, A, Asia 1, C, and SAT 3, while sequences for the two remaining FMDV serotypes, SAT 1 and SAT 2 did not separate into entirely distinct clades. The phylogenomic tree revealed three sister-group relationships, serotype O + Asia 1, A + C, and SAT 1 + 3 + 2, with a new branching pattern: {[(O, Asia 1), (A, C)], (SAT 1, 2, 3)}. Within each serotype, there was no apparent periodic, geographic, or host species influence on the evolution of global FMDVs. Analysis of the polyprotein coding region of these sequences provided evidence for the influence of purifying selection on the evolution of FMDV. Using a Bayesian coalescent approach, the evolutionary rate of FMDV isolates that circulated during the years 1932-2007 was estimated to be 1.46 x 10(-3) substitutions/site/year, and the most recent common ancestor of the virus existed approximately 481 years ago. Bayesian skyline plot revealed a population expansion in the early 20(th) century that was followed by a rapid decline in population size from the late 20(th) century to the present day. These findings provide new insights into the mechanisms that impact on the evolution of this important livestock pathogen.

Abstract

Notwithstanding the well-characterised roles of a number of oncogenes in neoplastic transformation, microRNAs (miRNAs) are increasingly implicated in several human cancers. Discovery of miRNAs in several oncogenic herpesviruses such as KSHV has further highlighted the potential of virus-encoded miRNAs to contribute to their oncogenic capabilities. Nevertheless, despite the identification of several possible cancer-related genes as their targets, the direct in vivo role of virus-encoded miRNAs in neoplastic diseases such as those induced by KSHV is difficult to demonstrate in the absence of suitable models. However, excellent natural disease models of rapid-onset Marek's disease (MD) lymphomas in chickens allow examination of the oncogenic potential of virus-encoded miRNAs. Using viruses modified by reverse genetics of the infectious BAC clone of the oncogenic RB-1B strain of MDV, we show that the deletion of the six-miRNA cluster 1 from the viral genome abolished the oncogenicity of the virus. This loss of oncogenicity appeared to be primarily due to the single miRNA within the cluster, miR-M4, the ortholog of cellular miR-155, since its deletion or a 2-nucleotide mutation within its seed region was sufficient to inhibit the induction of lymphomas. The definitive role of this miR-155 ortholog in oncogenicity was further confirmed by the rescue of oncogenic phenotype by revertant viruses that expressed either the miR-M4 or the cellular homolog gga-miR-155. This is the first demonstration of the direct in vivo role of a virus-encoded miRNA in inducing tumors in a natural infection model. Furthermore, the use of viruses deleted in miRNAs as effective vaccines against virulent MDV challenge, enables the prospects of generating genetically defined attenuated vaccines.

Abstract

The diverse sequences of viral populations within individual hosts are the starting material for selection and subsequent evolution of RNA viruses such as foot-and-mouth disease virus (FMDV). Using next-generation sequencing (NGS) performed on a Genome Analyzer platform (Illumina), this study compared the viral populations within two bovine epithelial samples (foot lesions) from a single animal with the inoculum used to initiate experimental infection. Genomic sequences were determined in duplicate sequencing runs, and the consensus sequence of the inoculum determined by NGS was identical to that previously determined using the Sanger method. However, NGS revealed the fine polymorphic substructure of the viral population, from nucleotide variants present at just below 50% frequency to those present at fractions of 1%. Some of the higher-frequency polymorphisms identified encoded changes within codons associated with heparan sulfate binding and were present in both foot lesions, revealing intermediate stages in the evolution of a tissue culture-adapted virus replicating within a mammalian host. We identified 2,622, 1,434, and 1,703 polymorphisms in the inoculum and in the two foot lesions, respectively: most of the substitutions occurred in only a small fraction of the population and represented the progeny from recent cellular replication prior to onset of any selective pressures. We estimated the upper limit for the genome-wide mutation rate of the virus within a cell to be 7.8 × 10?4 per nucleotide. The greater depth of detection achieved by NGS demonstrates that this method is a powerful and valuable tool for the dissection of FMDV populations within hosts.

King K, Chapman D, Argilaguet J M, Fishbourne E, Hutet E, Cariolet R, Hutchings G, Oura C A L, Netherton C L, Moffat K, Taylor G, Le Potier M F, Dixon L K, Takamatsu H H (2011)

Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation

Vaccine 29 (28), 4593-4600

Abstract

African swine fever (ASF) is an acute haemorrhagic disease of domestic pigs for which there is currently no vaccine. We showed that experimental immunisation of pigs with the non-virulent OURT88/3 genotype I isolate from Portugal followed by the closely related virulent OURT88/1 genotype I isolate could confer protection against challenge with virulent isolates from Africa including the genotype I Benin 97/1 isolate and genotype X Uganda 1965 isolate. This immunisation strategy protected most pigs challenged with either Benin or Uganda from both disease and viraemia. Cross-protection was correlated with the ability of different ASFV isolates to stimulate immune lymphocytes from the OURT88/3 and OURT88/1 immunised pigs.

Abstract

The innate immune receptors, such as Toll-like receptors (TLRs), are intimately involved in the early sensing of invading microorganisms or their structural components. Engagement of TLRs with their ligands results in activation of several downstream intracellular pathways leading to activation of innate and adaptive immune system cells. It was initially thought that TLRs are primarily expressed by antigen-presenting cells (APCs), such as macrophages and dendritic cells, and that interactions between microbial ligands and TLRs in these cells will indirectly result in activation of cells of the adaptive immune system, especially T cells. However, it has now become evident that TLRs are also expressed by various T cell subsets, such as conventional alpha beta T cells, regulatory T cells, and gamma delta T cells as well as natural killer T cells. Importantly, it appears that at least in some of these T cell subsets, TLRs are functionally active, because stimulation of these cells with TLR agonists in the absence of APCs results in exertion of effector or regulatory functions of T cells. The present review attempts to summarize the recent findings related to TLR expression in different T cell subsets and the direct role of TLRs in the induction and regulation of T cell responses, including those responses that occur at mucosal surfaces. In addition, the potential use of TLR agonists for steering T cell responses as a prophylactic or therapeutic strategy in the context of infectious, allergic or autoimmune diseases is explored.
Kwong L S, Parsons R, Patterson R, Coffey T J, Thonur L, Chang J S, Russell G, Haig D, Werling D, Hope J C (2011)

Characterisation of antibodies to bovine toll-like receptor (TLR)-2 and cross-reactivity with ovine TLR2

Veterinary Immunology and Immunopathology 139 (2-4), 313-318

Abstract

Host recognition of conserved pathogen-associated molecular patterns (PAMPs) and their interactions with pattern-recognition receptors, including the Toll-like receptors (TLR) is essential for innate immune response induction. The TLR1 family (TLR1, 2, 6 and 10) is involved in the recognition of gram-positive and gram-negative bacteria and heterodimers of TLR1 or TLR6 with TLR2 are crucial for the identification of several PAMPs. Studies on cell surface expression of TLR in ruminants are hampered by the lack of specific antibodies and no convincingly cross-reactive anti-human antibodies have been described so far. We describe herein four antibodies which recognise bovine TLR2. Differences in TLR2 expression were evident on bovine antigen presenting cells with high level expression on peripheral blood monocytes and monocyte-derived macrophages. Lower levels of expression were evident on dendritic cell populations derived in vitro and ex vivo, and on alveolar macrophages. One of the antibodies recognised TLR2 expression on ovine peripheral blood monocytes. The identification of antibodies specific for bovine and ovine TLR2 will facilitate studies of the role of this important PRR in the initiation of immune responses to important pathogens.
Lai L, Bumstead J, Liu Y, Garnett J, Campanero-Rhodes M A, Blake D P, Palma A S, Chai W, Ferguson D J, Simpson P, Feizi T, Tomley F M, Matthews S (2011)

The role of sialyl glycan recognition in host tissue tropism of the avian parasite Eimeria tenella

PLoS Pathogens 7 (10), e1002296

Abstract

Eimeria spp. are a highly successful group of intracellular protozoan parasites that develop within intestinal epithelial cells of poultry, causing coccidiosis. As a result of resistance against anticoccidial drugs and the expense of manufacturing live vaccines, it is necessary to understand the relationship between Eimeria and its host more deeply, with a view to developing recombinant vaccines. Eimeria possesses a family of microneme lectins (MICs) that contain microneme adhesive repeat regions (MARR). We show that the major MARR protein from Eimeria tenella, EtMIC3, is deployed at the parasite-host interface during the early stages of invasion. EtMIC3 consists of seven tandem MAR1-type domains, which possess a high specificity for sialylated glycans as shown by cell-based assays and carbohydrate microarray analyses. The restricted tissue staining pattern observed for EtMIC3 in the chicken caecal epithelium indicates that EtMIC3 contributes to guiding the parasite to the site of invasion in the chicken gut. The microarray analyses also reveal a lack of recognition of glycan sequences terminating in the N-glycolyl form of sialic acid by EtMIC3. Thus the parasite is well adapted to the avian host which lacks N-glycolyl neuraminic acid. We provide new structural insight into the MAR1 family of domains and reveal the atomic resolution basis for the sialic acid-based carbohydrate recognition. Finally, a preliminary chicken immunization trial provides evidence that recombinant EtMIC3 protein and EtMIC3 DNA are effective vaccine candidates.

Abstract

Sheep poxvirus (SPPV), Goat poxvirus (GTPV) and Lumpy skin disease virus (LSDV) are Capripoxviruses (CaPVs) responsible for causing severe poxvirus disease in sheep, goats and cattle, respectively. Serological differentiation of CaPVs is not possible and strain identification has relied on the implicitly accepted hypothesis that the viruses show well defined host specificity. However, it is now known that cross infections can occur and authentication of identity based on the host animal species from which the strain was first isolated, is not valid and should be replaced with molecular techniques to allow unequivocal strain differentiation. To identify a diagnostic target for strain genotyping, the CaPV homologue of the Vaccinia virus E4L gene which encodes the 30 kDa DNA-dependant RNA polymerase subunit, RPO30 was analyzed. Forty-six isolates from different hosts and geographical origins were included. Most CaPVs fit into one of the three different groups according to their host origins: the SPPV, the GTPV and the LSDV group. A unique 21-nucleotide deletion was found in all SPPV isolates which was exploited to develop a RPO30-based classical PCR test to differentiate SPPV from GTPV that will allow rapid differential diagnosis of disease during CaPV outbreaks in small ruminants.

Abstract

The genus Capripoxvirus (CaPV) comprises three members namely, sheep poxvirus (SPPV), goat poxvirus (GTPV) and lumpy skin disease virus (LSDV) affecting sheep, goats and cattle, respectively. CaPV infections produce similar symptoms in sheep and goats, and the three viruses cannot be distinguished serologically. Since there are conflicting opinions regarding the host specificity of CaPVs, particularly for goatpox and sheeppox viruses, the development of rapid genotyping tools will facilitate more accurate disease diagnosis and surveillance for better management of capripox outbreaks. This paper describes a species-specific, real time polymerase chain reaction (PCR), based on unique molecular markers that were found in the G-protein-coupled chemokine receptor (GPCR) gene sequences of CaPVs, that uses dual hybridization probes for their simultaneous detection, quantitation and genotyping. The assay can differentiate between CaPV strains based on differences in the melting point temperature (Tm) obtained after fluorescence melting curve analysis (FMCA). It is highly sensitive and presents low intra- and inter-run variation. This real time PCR assay will make a significant contribution to CaPV diagnosis and to the better understanding of the epidemiology of CaPVs by enabling rapid genotyping and gene-based classification of viral strains and unequivocal identification of isolates.
Lecours M P, Segura M, Lachance C, Mussa T, Surprenant C, Montoya M, Gottschalk M (2011)

Characterization of porcine dendritic cell response to Streptococcus suis

Veterinary Research 42 (1), 72

Abstract

Streptococcus suis is a major swine pathogen and important zoonotic agent causing mainly septicemia and meningitis. However, the mechanisms involved in host innate and adaptive immune responses toward S. suis as well as the mechanisms used by S. suis to subvert these responses are unknown. Here, and for the first time, the ability of S. suis to interact with bone marrow-derived swine dendritic cells (DCs) was evaluated. In addition, the role of S. suis capsular polysaccharide in modulation of DC functions was also assessed. Well encapsulated S. suis was relatively resistant to phagocytosis, but it increased the relative expression of Toll-like receptors 2 and 6 and triggered the release of several cytokines by DCs, including IL-1beta, IL-6, IL-8, IL-12p40 and TNF-alpha. The capsular polysaccharide was shown to interfere with DC phagocytosis; however, once internalized, S. suis was readily destroyed by DCs independently of the presence of the capsular polysaccharide. Cell wall components were mainly responsible for DC activation, since the capsular polysaccharide-negative mutant induced higher cytokine levels than the wild-type strain. The capsular polysaccharide also interfered with the expression of the co-stimulatory molecules CD80/86 and MHC-II on DCs. To conclude, our results show for the first time that S. suis interacts with swine origin DCs and suggest that these cells might play a role in the development of host innate and adaptive immunity during an infection with S. suis serotype 2.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.