Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2609 results for your search.

Abstract

BACKGROUND: Co-infection with the avian leukosis virus subgroup J (ALV-J) and the reticuloendotheliosis virus (REV) increases mutual viral replication, causing a more serious pathogenic effect by accelerating the progression of neoplasia and extending the tumor spectrum. However, the molecular mechanism underlying the synergistic replication of ALV-J and REV remains unclear.

RESULTS: Here, we performed this study to compare the differentially expressed proteins among CEF cells infected with ALV-J, REV or both at the optimal synergistic infection time using TMT-based quantitative proteomics. We identified a total of 719 (292 upregulated and 427 downregulated) and 64 (35 upregulated and 29 downregulated) proteins by comparing co-infecting both viruses with monoinfecting ALV-J and REV, respectively. GO annotation and KEGG pathway analysis showed the differentially expressed proteins participated in virus-vector interaction, biological adhesion and immune response pathways in the synergistic actions of ALV-J and REV at the protein levels. Among the differentially expressed proteins, a large number of integrins were inhibited or increased in the co-infection group. Further, eight integrins, including ITGα1, ITGα3, ITGα5, ITGα6, ITGα8, ITGα9, ITGα11 and ITGβ3, were validated in CEF cells by qRT-PCR or western blot.

CONCLUSIONS: These findings proved that integrins may be key regulators in the mechanism of synergistic infection of REV and ALV-J, which will provide more insight into the pathogenesis of synergism of REV and ALV-J at protein level.

Abstract

Foot-and-mouth disease virus (FMDV) causes FMD, a highly contagious disease of cloven-hoofed animals including cattle, goats, pigs and sheep. Rapid detection of FMDV is critical to limit the devastating economic losses due to FMD. Current laboratory methods for FMDV detection such as virus isolation, real-time reverse transcription PCR and antigen detection enzyme-linked immunosorbent assay (AgELISA) are labor-intensive, requiring trained personnel and specialized equipment. We present the development and validation of a pan-serotype lateral flow strip test (LFST) that uses recombinant bovine integrin αvβ6 as a universal capture ligand and a pan-serotype monoclonal antibody (mAb) to detect FMDV. The LFST detected all seven FMDV serotypes, where the diagnostic sensitivity was comparable to the AgELISA, and the diagnostic specificity was 100% without cross-reactivity to other viruses causing vesicular disease in livestock. This rapid test will be useful for on-site FMDV detection, as well as in laboratories in endemic countries where laboratory resources are limited. 

Keep S, Carr B V, Lean F Z X, Fones A, Newman J, Dowgier G, Freimanis G, Vatzia E, Polo N, Everest H, Webb I, McNee A, Paudyal B, Thakur N, Nunez A, MacLoughlin R, Maier H, Hammond J, Bailey D, Waters R, Charleston B, Tuthill T, Britton P, Bickerton E, Tchilian E (2022)

Porcine respiratory coronavirus as a model for acute respiratory coronavirus disease

Frontiers in Immunology 13, 867707

Abstract

In the light of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, we have developed a porcine respiratory coronavirus (PRCV) model for in depth mechanistic evaluation of the pathogenesis, virology and immune responses of this important family of viruses. Pigs are a large animal with similar physiology and immunology to humans and are a natural host for PRCV. Four PRCV strains were investigated and shown to induce different degrees of lung pathology. Importantly, although all four strains replicated equally well in porcine cell lines in vitro and in the upper respiratory tract in vivo, PRCV strains causing more severe lung pathology were also able to replicate in ex vivo tracheal organ cultures as well as in vivo in the trachea and lung. The time course of infection of PRCV 135, which caused the most severe pulmonary pathology, was investigated. Virus was shed from the upper respiratory tract until day 10 post infection, with infection of the respiratory mucosa, as well as olfactory and sustentacular cells, providing an excellent model to study upper respiratory tract disease in addition to the commonly known lower respiratory tract disease from PRCV. Infected animals made antibody and T cell responses that cross reacted with the four PRCV strains and Transmissible Gastroenteritis Virus. The antibody response was reproduced in vitro in organ cultures. Comparison of mechanisms of infection and immune control in pigs infected with PRCVs of differing pathogenicity with human data from SARS-CoV-2 infection and from our in vitro organ cultures, will enable key events in coronavirus infection and disease pathogenesis to be identified.

Abstract

Chicken astrovirus (CAstV) infection can cause diarrhea, nephritis, stunted growth, and “white chickens” condition, resulting in economic losses to the poultry industry. Currently, a few CAstVs were isolated and a few full-length genome sequences of CAstV have been deposited in the GenBank. In the present study, two CAstV isolates (AAstV/Chicken/CHN/2017/NJ01 and AAstV/Chicken/CHN/2018/CZ01) were successfully isolated by using LMH cells, and we molecularly characterized these two CAstV isolates and observed the effect of these two isolates on hatchability using chicken embryo infection experiment. The genetic analysis demonstrated that these two strains had the typical characteristics of avian astroviruses, which were composed of three open reading frames, 5′UTR, and 3′UTR. The full-length genome sequence showed a high-degree identity at nucleotide level of 97.5–98.7% among Chinese isolates suggesting their common ancestors and limited sequence divergence. Sequence analysis of ORF2, which encodes the capsid protein associated with classification of avian astrovirus, revealed our two isolates belonging to CAstV Bi subtype. At the amino acid level, the complete capsid region of Chinese strains shared genetic distances of 0.03–0.04 with FP3 strains isolated from the UK, suggesting their common origin. Meanwhile, hatchability reduction was observed. These results provided novel insights into the molecular epidemiology and hatchability effect of CAstV.

Abstract

Maternally derived antibodies (MDAs) are important for protecting chickens against pathogens in the neonatal stage however, they often interfere with vaccine performance. Here, we investigated the effects of MDAs on a targeted antigen delivery vaccine (TADV), which is developed by conjugating H9 subtype avian influenza virus haemagglutinin (HA) antigen to single chain fragment variable (scFv) antibodies specific for the chicken antigen presenting cell receptor CD83. Groups of 1-day-old chickens carrying high levels of MDAs (MDA++) and 14-day old chickens carrying medium levels of MDAs (MDA+) were immunised with TADV (rH9HA-CD83 scFv), untargeted rH9HA or inactivated H9N2 vaccines. Immunogenicity in these vaccinated chickens was compared using haemagglutination inhibition (HI) and enzyme-linked immunosorbent assays (ELISA). The results showed that the TADV (rH9HA-CD83 scFv) induced significantly higher levels of H9HA-specific antibody titres compared to the untargeted rH9HA and inactivated H9N2 vaccines in MDA++ and MDA+ chickens. Overall, the data demonstrates immune responses induced by TADV are not affected by the MDA in chickens.

Spencer A J, Morris S, Ulaszewska M, Powers C, Kailath R, Bissett C, Truby A, Thakur N, Newman J, Allen E R, Rudiansyah I, Liu C, Dejnirattisai W, Mongkolsapaya J, Davies H, Donnellan F R, Pulido D, Peacock T P, Barclay W S, Bright H, Ren K, Screaton G, McTamney P, Bailey D, Gilbert S C, Lambe T (2022)

The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies

eBioMedicine 77

Abstract

There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), an increase in binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) is observed following each additional dose. In addition, a strong and polyfunctional T cell response was measured all booster regimens. Real world data is demonstrating that one or more doses of licensed SARS-CoV-2 vaccines confer reduced protection against hospitalisation and deaths caused by divergent VoC, including Omicron. Our data support the ongoing clinical development and testing of booster vaccines to increase immunity against highly mutated VoC.

Abstract

Infection with pathogenic viruses is often sensed by innate receptors such as Toll-Like Receptors (TLRs) which stimulate type I and III interferons (IFNs) responses, to generate an antiviral state within many cell types. To counteract these antiviral systems, many viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), encode non-structural proteins (NSPs) that mediate immune evasion. Using an overexpression system in A549 cells, we demonstrated a significant increase (p ≤ 0.0001) in Vesicular Stomatitis Virus (VSV)-EGFP reporter virus replication in cell lines overexpressing either the SARS-CoV-2 NSP1 or NSP15 when compared to control A549 cells. The increase in VSV-EGFP virus output was associated with a decrease in TLR2, TLR4 and TLR9 protein expression and a lack of antiviral protein production. Truncation of both NSP1 and NSP15 led to an increase in cellular TLR2, TLR4 and TLR9 as well as a decrease in TLR2 expression respectively. This observation can be attributed to the presence of a functional domain in NSP1 and NSP15 between amino acid (aa) 120-180 and aa 230-346, respectively. Both TLR3 and TLR9 ligands but not TLR2 ligand were highly effective at overcoming NSP1 and NSP15 functional interference based on significant decrease (p ≤ 0.0001) in VSV-EGFP virus replication. NSP1 or NSP15 intracellular interactions are likely low affinity interactions that can be easily disrupted by stimulating cells with specific TLR3 and TLR9 ligands. This report provides insights into the role of SARS-CoV-2 NSP1 and NSP15 in limiting specific TLR pathway activation, as an evasive mechanism against host innate responses.

Abstract

We investigate electropolymerized molecularly imprinted polymers (E-MIPs) for the selective recognition of SARS-CoV-2 whole virus. E-MIPs imprinted with SARS-CoV-2 pseudoparticles (pps) were electrochemically deposited onto screen printed electrodes by reductive electropolymerization, using the water-soluble N-hydroxmethylacrylamide (NHMA) as functional monomer and crosslinked with N,N′-methylenebisacrylamide (MBAm). E-MIPs for SARS-CoV-2 showed selectivity for template SARS-CoV-2 pps, with an imprinting factor of 3:1, and specificity (significance = 0.06) when cross-reacted with other respiratory viruses. E-MIPs detected the presence of SARS-CoV-2 pps in <10 min with a limit of detection of 4.9 log10 pfu/mL, suggesting their suitability for detection of SARS-CoV-2 with minimal sample preparation. Using electrochemical impedance spectroscopy (EIS) and principal component analysis (PCA), the capture of SARS-CoV-2 from real patient saliva samples was also evaluated. Fifteen confirmed COVID-19 positive and nine COVID-19 negative saliva samples were compared against the established loop-mediated isothermal nucleic acid amplification (LAMP) technique used by the UK National Health Service. EIS data demonstrated a PCA discrimination between positive and negative LAMP samples. A threshold real impedance signal (ZRe) ≫ 4000 Ω and a corresponding charge transfer resistance (RCT) ≫ 6000 Ω was indicative of absence of virus (COVID-19 negative) in agreement with values obtained for our control non-imprinted polymer control. A ZRe at or below a threshold value of 600 Ω with a corresponding RCT of <1200 Ω was indicative of a COVID-19 positive sample. The presence of virus was confirmed by treatment of E-MIPs with a SARS-CoV-2 specific monoclonal antibody.

Abstract

Introduction: Decontamination of redundant laboratories, contained plant space, and support buildings used to handle high consequence animal pathogens (North America BSL-3Ag, UK SAPO4) was required before demolition to mitigate the risk that infectious material was released into the environment. Methods: Given the age of the buildings and their construction, bespoke qualitative risk-based methods were developed by biorisk personnel, in consultation with specialist contractors where applicable. This approach was to give assurance that suitable decontamination was achievable, sometimes through multilayered approaches to disinfection. Time was considered as a contributing factor in decontamination. Different means of achieving decontamination were employed, and waste management was considered as part of the overall process ensuring a “cradle to grave” approach. Summary: This article describes the challenges and solutions, faced by a UK facility licensed to work on high hazard pathogens, including foot-and-mouth disease virus and African swine fever virus. The risk-based approach (and methods described herein) may also be applicable to routine decontamination of younger buildings, that is, during renovations or temporary derestriction.

Abstract

Peste des petits ruminants (PPR) is a highly contagious and devastating viral disease infecting predominantly sheep and goats. Tracking outbreaks of disease and analysing the movement of the virus often involves sequencing part or all of the genome and comparing the sequence obtained with sequences from other outbreaks, obtained from the public databases. However, there are a very large number (>1800) of PPRV sequences in the databases, a large majority of them relatively short, and not always well-documented. There is also a strong bias in the composition of the dataset, with countries with good sequencing capabilities (e.g. China, India, Turkey) being overrepresented, and most sequences coming from isolates in the last 20 years. In order to facilitate future analyses, we have prepared sets of PPRV sequences, sets which have been filtered for sequencing errors and unnecessary duplicates, and for which date and location information has been obtained, either from the database entry or from other published sources. These sequence datasets are freely available for download, and include smaller datasets which maximise phylogenetic information from the minimum number of sequences, and which will be useful for simple lineage identification. Their utility is illustrated by uploading the data to the MicroReact platform to allow simultaneous viewing of lineage date and geographic information on all the viruses for which we have information. While preparing these datasets, we identified a significant number of public database entries which contain clear errors, and propose guidelines on checking new sequences and completing metadata before submission.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.