Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2609 results for your search.

Abstract

Sex determination pathways in insects are generally characterised by an upstream primary signal, which is highly variable across species, and that regulates the splicing of a suite of downstream but highly-conserved genes (transformer, doublesex and fruitless). In turn, these downstream genes then regulate the expression of sex-specific characteristics in males and females. Identification of sex determination pathways has and continues to be, a critical component of insect population suppression technologies. For example, "first-generation" transgenic technologies such as fsRIDL (Female-Specific Release of Insects carrying Dominant Lethals) enabled efficient selective removal of females from a target population as a significant improvement on the sterile insect technique (SIT). Second-generation technologies such as CRISPR/Cas9 homing gene drives and precision-guided SIT (pgSIT) have used gene editing technologies to manipulate sex determination genes in vivo. The development of future, third-generation control technologies, such as Y-linked drives, (female to male) sex-reversal, or X-shredding, will require additional knowledge of aspects of sexual development, including a deeper understanding of the nature of primary signals and dosage compensation. This review shows how knowledge of sex determination in target pest species is fundamental to all phases of the development of control technologies.

Stejskal L, Kalemera M D, Lewis C B, Palor M, Walker L, Daviter T, Lees W D, Moss D S, Kremyda-Vlachou M, Zisis Kozlakidis Z, Gallo G, Bailey D, Rosenberg W, Illingworth C J R, Shepherd A J, Grove J (2022)

An entropic safety catch controls Hepatitis C virus entry and antibody resistance

eLife 11, e71854

Abstract

E1 and E2 (E1E2), the fusion proteins of Hepatitis C Virus (HCV), are unlike that of any other virus yet described, and the detailed molecular mechanisms of HCV entry/fusion remain unknown. Hypervariable region-1 (HVR-1) of E2 is a putative intrinsically disordered protein tail. Here, we demonstrate that HVR-1 has an autoinhibitory function that suppresses the activity of E1E2 on free virions; this is dependent on its conformational entropy. Thus, HVR-1 is akin to a safety catch that prevents premature triggering of E1E2 activity. Crucially, this mechanism is turned off by host receptor interactions at the cell surface to allow entry. Mutations that reduce conformational entropy in HVR-1, or genetic deletion of HVR-1, turn off the safety catch to generate hyper-reactive HCV that exhibits enhanced virus entry but is thermally unstable and acutely sensitive to neutralising antibodies. Therefore, the HVR-1 safety catch controls the efficiency of virus entry and maintains resistance to neutralising antibodies. This discovery provides an explanation for the ability of HCV to persist in the face of continual immune assault and represents a novel regulatory mechanism that is likely to be found in other viral fusion machinery.

Abstract

Culicoides biting midges (Diptera: Ceratopogonidae) are biological vectors of livestock arboviruses that cause diseases with significant economic, social and welfare impacts. Within temperate regions, livestock movement during arbovirus outbreaks can be facilitated by declaring a 'seasonal vector-free period' (SVFP) during winter when adult Culicoides are not active. In this study we carry out long-term monitoring of Culicoides adult emergence from larval development habitats at two farms in the UK to validate current definitions of the SVFP and to provide novel bionomic data for known vector species.

METHODS: Standard emergence traps were used to collect emerging adult Culicoides from dung heaps at two cattle farms in the south-east of England from June to November 2016 and March 2017 to May 2018. Culicoides were morphologically identified to species or complex level and count data were analysed using a simple population dynamic model for pre-adult Culicoides that included meteorological components.

RESULTS: More than 96,000 Culicoides were identified from 267 emergence trapping events across 2 years, revealing clear evidence of bivoltinism from peaks of male populations of Culicoides obsoletus emerging from dung heaps. This pattern was also reflected in the emergence of adult female Obsoletus complex populations, which dominated the collections (64.4% of total catch) and emerged throughout the adult active period. Adult male C. obsoletus were observed emerging earlier than females (protandry) and emergence of both sexes occurred throughout the year. Culicoides chiopterus and Culicoides scoticus were also identified in spring emergence collections, providing the first evidence for the overwintering of larvae in dung heaps for these species.

CONCLUSIONS: This study demonstrates continual and highly variable rates of emergence of Culicoides throughout the year. A lack of evidence for mass emergence in spring along with the ability to observe male generations highlights the need for complementary surveillance techniques in addition to light-trap data when investigating seasonality and phenology. Evidence was found of other vector species, C. chiopterus and C. scoticus, utilising cattle dung heaps as an overwintering habitat, further highlighting the importance of these habitats on farms.

Tng P Y L, Carabajal Paladino L Z, Anderson M A E, Adelman Z N, Fragkoudis R, Noad R, Alphey L (2022)

Intron-derived small RNAs for silencing viral RNAs in mosquito cells

PLoS Neglected Tropical Diseases 16 (6), e0010548

Abstract

Aedes aegypti and Ae. albopictus are the main vectors of mosquito-borne viruses of medical and veterinary significance. Many of these viruses have RNA genomes. Exogenously provided, e.g. transgene encoded, small RNAs could be used to inhibit virus replication, breaking the transmission cycle. We tested, in Ae. aegypti and Ae. albopictus cell lines, reporter-based strategies for assessing the ability of two types of small RNAs to inhibit a chikungunya virus (CHIKV) derived target. Both types of small RNAs use a Drosophila melanogaster pre-miRNA-1 based hairpin for their expression, either with perfect base-pairing in the stem region (shRNA-like) or containing two mismatches (miRNA-like). The pre-miRNA-1 stem loop structure was encoded within an intron; this allows co-expression of one or more proteins, e.g. a fluorescent protein marker tracking the temporal and spatial expression of the small RNAs in vivo. Three reporter-based systems were used to assess the relative silencing efficiency of ten shRNA-like siRNAs and corresponding miRNA-like designs. Two systems used a luciferase reporter RNA with CHIKV RNA inserted either in the coding sequence or within the 3' UTR. A third reporter used a CHIKV derived split replication system. All three reporters demonstrated that while silencing could be achieved with both miRNA-like and shRNA-like designs, the latter were substantially more effective. Dcr-2 was required for the shRNA-like siRNAs as demonstrated by loss of inhibition of the reporters in Dcr-2 deficient cell lines. These positive results in cell culture are encouraging for the potential use of this pre-miRNA-1-based system in transgenic mosquitoes.

Ward J C, Lasecka-Dykes L, Neil C, Adeyemi O O, Gold S, McLean N, Wright C, Herod M R, Kealy D, Warner E, Jackson T, King D P, Tuthill T J, Rowlands D J, Stonehouse N J (2022)

The RNA pseudoknots in foot-and-mouth disease virus are dispensable for genome replication, but essential for the production of infectious virus

PLoS Pathogens 18 (6), e1010589

Abstract

Non-coding regions of viral RNA (vRNA) genomes are critically important in the regulation of gene expression. In particular, pseudoknot (PK) structures, which are present in a wide range of RNA molecules, have a variety of roles. The 5' untranslated region (5' UTR) of foot-and-mouth disease virus (FMDV) vRNA is considerably longer than in other viruses from the picornavirus family and consists of a number of distinctive structural motifs that includes multiple (2, 3 or 4 depending on the virus strain) putative PKs linked in tandem. The role(s) of the PKs in the FMDV infection are not fully understood. Here, using bioinformatics, sub-genomic replicons and recombinant viruses we have investigated the structural conservation and importance of the PKs in the FMDV lifecycle. Our results show that despite the conservation of two or more PKs across all FMDVs, a replicon lacking PKs was replication competent, albeit at reduced levels. Furthermore, in competition experiments, GFP FMDV replicons with less than two (0 or 1) PK structures were outcompeted by a mCherry FMDV wt replicon that had 4 PKs, whereas GFP replicons with 2 or 4 PKs were not. This apparent replicative advantage offered by the additional PKs correlates with the maintenance of at least two PKs in the genomes of FMDV field isolates. Despite a replicon lacking any PKs retaining the ability to replicate, viruses completely lacking PK were not viable and at least one PK was essential for recovery of infections virus, suggesting a role for the PKs in virion assembly. Thus, our study points to roles for the PKs in both vRNA replication and virion assembly, thereby improving understanding the molecular biology of FMDV replication and the wider roles of PK in RNA functions.

Abstract

Marek's disease (MD) is caused by virulent strains of Gallid alphaherpesvirus type 2 (MD virus serotype 1; MDV 1) and frequently causes a lymphoproliferative disorder in poultry and other galliform birds worldwide. However, within the peafowl (Phasianinae) subfamily, there are only rare confirmed reports of MD. Here we report MD in an Indian peafowl (Pavo cristatus), which clinically presented with hindlimb paraparesis and intraocular swelling of the right eye. Soft, off-white to tan masses within the right eye, sciatic nerves and coelomic cavity were identified at post-mortem examination which effaced the cranial pole of the kidneys and diffusely effaced the testes. Lymphoid neoplasia was identified histologically at all of these sites and there was extensive hepatic lymphoid cell infiltration, which had not been grossly evident. The T-cell origin of the lymphoid cells was confirmed by immunohistochemistry for CD3 antigen. A virulent strain of MDV 1 was detected by real-time polymerase chain reaction in DNA samples extracted from the kidney and testes. As MD is rare in peafowl it should be considered as a differential diagnosis for intraocular and coelomic masses with associated clinical signs.

Abstract

Turkey herpesvirus (HVT) has been widely used as a successful live virus vaccine against Marek's disease (MD) in chickens for more than five decades. Increasingly, HVT is also used as a highly effective recombinant vaccine vector against multiple avian pathogens. Conventional recombination, or recombineering, techniques that involve the cloning of viral genomes and, more recently, gene editing methods have been used for the generation of recombinant HVT-based vaccines. In this study, we used NHEJ-dependent CRISPR/Cas9-based approaches to insert the mCherry cassette for the screening of the HVT genome and identifying new potential sites for the insertion of foreign genes. A novel intergenic site HVT-005/006 in the unique long (UL) region of the HVT genome was identified, and mCherry was found to be stably expressed when inserted at this site. To confirm whether this site was suitable for the insertion of other exogenous genes, haemagglutinin (HA) of the H9N2 virus was inserted into this site, and a recombinant HVT-005/006-HA was rescued. The recombinant HVT-HA can grow well and express HA protein stably, which demonstrated that HVT-005/006 is a promising site for the insertion of foreign genes.

Abstract

Cell lines allow studying various biological processes that may not be easily tractable in whole organisms. Here, we have established the first male-specific cell line from the African malaria mosquito, Anopheles gambiae. The cells, named AgMM and derived from the sex-sorted neonate larvae, were able to undergo spontaneous contractions for a number of passages following establishment, indicating their myoblast origin. Comparison of their transcriptome to the transcriptome of an A. gambiae-derived Sua5.1 hemocyte cells revealed distinguishing molecular signatures of each cell line, including numerous muscle-related genes that were highly and uniquely expressed in the AgMM cells. Moreover, the AgMM cells express the primary sex determiner gene Yob and support male sex determination and dosage compensation pathways. Therefore, the AgMM cell line represents a valuable tool for molecular and biochemical in vitro studies of these male-specific processes. In a broader context, a rich transcriptomic data set generated in this study contributes to a better understanding of transcribed regions of the A. gambiae genome and sheds light on the biology of both cell types, facilitating their anticipated use for various cell-based assays.

Pezzoni G, Calzolari M, Foglia E A, Bregoli A, di Nardo A, Sghaier S, Madani H, Chiapponi C, Grazioli S, Relmy A, Bakkali Kassimi L, Brocchi E (2022)

Characterization of the O/ME-SA/Ind-2001d foot-and-mouth disease virus epidemic recorded in the Maghreb during 2014-2015

Transboundary and Emerging Diseases early view
Publisher’s version: https://doi.org/10.1111/tbed.14611

Abstract

The O/ME-SA/Ind-2001d has been the main foot-and-mouth disease virus (FMDV) lineage responsible for FMD epidemics outside the Indian subcontinent from 2013 to 2017. In 2014, outbreaks caused by this FMDV lineage were reported in Maghreb, where it was initially detected in Algeria and Tunisia and later in Morocco. This was the first incursion of an FMDV type O of exotic origin in the Maghreb region after 14 years of absence. In this study, we report analyses of both VP1 and whole-genome sequences (WGSs) generated from 22 isolates collected in Algeria and Tunisia between 2014 and 2015. All the WGSs analysed showed a minimum pairwise identity of 98.9% at the nucleotide level and 99% at the amino acid level (FMDV coding region). All Tunisian sequences shared a single putative common ancestor closely related to FMDV strains circulating in Libya during 2013. Whereas sequences from Algeria suggest the country experienced two virus introductions. The first introduction is represented by strains circulating in 2014 which are closely related to those from Tunisia, the second one, of which the origin is more uncertain, includes strains collected in Algeria in 2015 that gave origin to the 2015 outbreak reported in Morocco. Overall, our results demonstrated that a unique introduction of O/Ind-2001d FMDV occurred in Maghreb through Tunisia presumably in 2014, and from then the virus spread into Algeria and later into Morocco.

Abstract

Many disease outbreaks, including Covid-19, are caused by viruses that have jumped from animals to humans. At the Pirbright Institute in the UK, Dr Rebecca McLean and Professor Simon Graham are studying one particular virus which did this in 1998 and continues to pose a threat today. They have developed and tested potential vaccines which, if delivered to pigs, could prevent future outbreaks of Nipah virus in humans.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.