Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2609 results for your search.

Abstract

In recent years, outbreaks of Marek’s disease (MD) have been frequently reported in vaccinated chicken flocks in China. Herein, we have demonstrated that four Marek’s disease virus (MDV) isolates, HN502, HN302, HN304, and HN101, are all pathogenic and oncogenic to hosts. Outstandingly, the HN302 strain induced 100% MD incidence, 54.84% mortality, and 87.10% tumor incidence, together with extensive atrophy of immune organs. Pathotyping of HN302 was performed in comparison to a standard very virulent (vv) MDV strain Md5. We found that both CVI988 and HVT vaccines significantly reduced morbidity and mortality induced by HN302 or Md5 strains, but the protection indices (PIs) provided by these two vaccines against HN302 were significantly lower (27.03%) or lower (33.33%) than that against Md5, which showed PIs of 59.89% and 54.29%, respectively. These data suggested that HN302 possesses a significant higher virulence than Md5 and at least could be designated as a vvMDV strain. Together with our previous phylogenetic analysis on MDV-1 meq genes, we have presently suggested HN302 to be a typical highly virulent MDV variant belonging to an independent Chinese branch. To our knowledge, this is the first report to provide convincible evidence to identify a pathogenic MDV variant strain with a higher virulence than Md5 in China, which may have emerged and circulating in poultry farms in China for a long time and involved in the recent MD outbreaks.

van Doremalen N, Schulz J E, Adney D R, Saturday T A, Fischer R J, Yinda C K, Thakur N, Newman J, Ulaszewska M, Belij-Rammerstorfer S, Saturday G, Spencer A J, Bailey D, Russell C A, Gilbert S C, Lambe T, Munster V J (2022)

ChAdOx1 nCoV-19 (AZD1222) or nCoV-19-Beta (AZD2816) protect Syrian hamsters against Beta Delta and Omicron variants

Nature Communications 13 (1), 4610

Abstract

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirus-vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 has been shown to have 74% vaccine efficacy against symptomatic disease in clinical trials. However, variants of concern (VoCs) have been detected, with substitutions that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial, even though current real-world data is suggesting good efficacy following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluate the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. Minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 3- or 5- days post inoculation, in contrast to lungs of control animals. In Omicron-challenged hamsters, a single dose of AZD2816 or AZD1222 reduced virus shedding. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.

Abstract

The envelope (E) protein of the avian coronavirus infectious bronchitis virus (IBV) is a small-membrane protein present in two forms during infection: a monomer and a pentameric ion channel. Each form has an independent role during replication; the monomer disrupts the secretory pathway, and the pentamer facilitates virion production. The presence of a T16A or A26F mutation within E exclusively generates the pentameric or monomeric form, respectively. We generated two recombinant IBVs (rIBVs) based on the apathogenic molecular clone Beau-R, containing either a T16A or A26F mutation, denoted as BeauR-T16A and BeauR-A26F. The replication and genetic stability of the rIBVs were assessed in several different cell types, including primary and continuous cells, ex vivo tracheal organ cultures (TOCs) and in ovo. Different replication profiles were observed between cell cultures of different origins. BeauR-A26F replicated to a lower level than Beau-R in Vero cells and in ovo but not in DF1, primary chicken kidney (CK) cells or TOCs. Genetic stability and cytopathic effects were found to differ depending on the cell system. The effect of the T16A and A26F mutations appear to be cell-type dependent, which, therefore, highlights the importance of cell type in the investigation of the IBV E protein.

Abstract

Pseudorabies virus (PRV) is the causative agent of pseudorabies (PR), infecting most mammals and some birds. It has been prevalent around the world and caused huge economic losses to the swine industry since its discovery. At present, the prevention of PRV is mainly through vaccination; there are few specific antivirals against PRV, but it is possible to treat PRV infection effectively with drugs. In recent years, some drugs have been reported to treat PR; however, the variety of anti-pseudorabies drugs is limited, and the underlying mechanism of the antiviral effect of some drugs is unclear. Therefore, it is necessary to explore new drug targets for PRV and develop economic and efficient drug resources for prevention and control of PRV. This review will focus on the research progress in drugs and drug targets against PRV in recent years, and discuss the future research prospects of anti-PRV drugs.

Abstract

Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic arboviral disease that poses a great threat to global health in the Old World, and it is endemic in Europe, Asia, and Africa, including Sudan. In this retrospective study, we reviewed previous epidemiological reports about the major epidemics of CCHF throughout Sudan between 2010 and 2020. During these epidemics, the infection of humans with Crimean-Congo hemorrhagic fever virus (CCHFV), the causative agent of CCHF, was diagnosed using qRT-PCR. We have identified 88 cases of CCHF, including 13 fatalities reported during five epidemics that occurred in 2010, 2011, 2015, 2019, and 2020. The two epidemics in 2010 and 2011 were by far the largest, with 51 and 27 cases reported, respectively. The majority of cases (78%) were reported in the endemic region of Kordofan. Here, we document that the first emergence of CCHFV in the Darfur region, West Sudan, occurred in 2010. We were not able to investigate outbreak dynamics through phylogenetic analysis due to the limited diagnostic capacity and the lack of sequencing services in the country. These findings call for establishing a genomic-based integrated One Health surveillance and response system for the early preparedness, prevention, and control of CCHF in the country.

Abstract

Predicting the likelihood of wildlife presence at potential wildlife-livestock interfaces is challenging. These interfaces are usually relatively small geographical areas where landscapes show large variation over small distances. Models of wildlife distribution based on coarse data over wide geographical ranges may not be representative of these interfaces. High-resolution data can help identify fine-scale predictors of wildlife habitat use at a local scale and provide more accurate predictions of species habitat use. These data may be used to inform knowledge of interface risks, such as disease transmission between wildlife and livestock, or human-wildlife conflict.This study uses fine-scale habitat use data from wild boar (Sus scrofa) based on activity signs and direct field observations in and around the Forest of Dean in Gloucestershire, England. Spatial logistic regression models fitted using a variant of penalized quasi-likelihood were used to identify habitat-based and anthropogenic predictors of wild boar signs.Our models showed that within the Forest of Dean, wild boar signs were more likely to be seen in spring, in forest-type habitats, closer to the center of the forest and near litter bins. In the area surrounding the Forest of Dean, wild boar signs were more likely to be seen in forest-type habitats and near recreational parks and less likely to be seen near livestock.This approach shows that wild boar habitat use can be predicted using fine-scale data over comparatively small areas and in human-dominated landscapes, while taking account of the spatial correlation from other nearby fine-scale data-points. The methods we use could be applied to map habitat use of other wildlife species in similar landscapes, or of movement-restricted, isolated, or fragmented wildlife populations.

Abstract

The primary transmission route for foot-and-mouth disease (FMD), a contagious viral disease of cloven-hoofed animals, is by direct contact with infected animals. Yet indirect methods of transmission, such as via the airborne route, have been shown to play an important role in the spread of the disease. Airborne transmission of FMD is referred to as a low probability- high consequence event as a specific set of factors need to coincide to facilitate airborne spread. When conditions are favourable, airborne virus may spread rapidly and cause disease beyond the imposed quarantine zones, thus complicating control measures. Therefore, it is important to understand the nature of foot-and-mouth disease virus (FMDV) within aerosols; how aerosols are generated, viral load, how far aerosols could travel and survive under different conditions. Various studies have investigated emissions from infected animals under laboratory conditions, while others have incorporated experimental data in mathematical models to predict and trace outbreaks of FMD. However, much of the existing literature focussing on FMDV in aerosols describe work which was undertaken over 40 years ago. The aim of this review is to revisit existing knowledge and investigate how modern instrumentation and modelling approaches can improve our understanding of airborne transmission of FMD.

Abstract

Culicoides biting midges (Diptera: Ceratopogonidae) are biting nuisances and arbovirus vectors of both public health and veterinary significance in Trinidad. We compared sampling methods to define the behaviour and bionomics of adult Culicoides populations at a commercial dairy goat farm. Three static trap designs were compared: (a) Centre for Disease Control (CDC) downdraft UV trap; (b) CDC trap with an incandescent bulb and (c) CDC trap with semiochemical lure consisting of R-(-)-1-octen-3-ol and CO2 (no bulb). Sweep netting was used to define diel periodicity. A total of 30,701 biting midges were collected using static traps, dominated by female Culicoides furens (>70% of trap collections across all three designs). There was no significant difference in the Margalef's index between the three traps; however, trap designs A and C collected a significantly greater number of individuals than trap B, and trap C gained highest species richness. The greatest species richness and abundance of Culicoides collected by sweep net was observed between 6:00 and 6:15 pm and notable differences in the crepuscular activity pattern of several species were identified. Comparative data on Culicoides species richness, abundance, sex and reproductive status is discussed and can be used to improve surveillance strategies, research designs and risk management.

Cantoni D, Mayora-Neto M, Thakur N, Elrefaey A M E, Newman J, Vishwanath S, Nadesalingam A, Chan A, Smith P, Castillo-Olivares J, Baxendale H, Charleston B, Heeney J, Bailey D, Temperton N (2022)

Pseudotyped bat coronavirus RaTG13 is efficiently neutralised by convalescent sera from SARS-CoV-2 infected patients

Communications Biology 5 (1), 409

Abstract

RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients or vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike mutants harbouring single and combinatorial amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing neutralisation. Moreover, introducing the 484 K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.

Abstract

Alphaviruses are positive-strand RNA viruses, mostly being mosquito-transmitted. Cells infected by an alphavirus become resistant to superinfection due to a block that occurs at the level of RNA replication. Alphavirus replication proteins, called nsP1-4, are produced from nonstructural polyprotein precursors, processed by the protease activity of nsP2. Trans-replicase systems and replicon vectors were used to study effects of nsP2 of chikungunya virus and Sindbis virus on alphavirus RNA replication in mosquito cells. Co-expressed wild-type nsP2 reduced RNA replicase activity of homologous virus; this effect was reduced but typically not abolished by mutation in the protease active site of nsP2. Mutations in the replicase polyprotein that blocked its cleavage by nsP2 reduced the negative effect of nsP2 co-expression, confirming that nsP2-mediated inhibition of RNA replicase activity is largely due to nsP2-mediated processing of the nonstructural polyprotein. Co-expression of nsP2 also suppressed the activity of replicases of heterologous alphaviruses. Thus, the presence of nsP2 inhibits formation and activity of alphavirus RNA replicase in protease activity-dependent and -independent manners. This knowledge improves our understanding about mechanisms of superinfection exclusion for alphaviruses and may aid the development of anti-alphavirus approaches.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.