Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2603 results for your search.

Abstract

Human noroviruses (HuNoV) are a major cause of viral gastroenteritis worldwide, yet, due to the inability to propagate HuNoV in cell culture, murine norovirus (MNV) is typically used as a surrogate to study norovirus biology. MNV-3 represents an attractive strain to study norovirus infections in vivo because it establishes persistence in wild-type mice, yet causes symptoms resembling gastroenteritis in immune-compromised STAT1(-/-) mice. The lack of reverse-genetics approaches to recover genetically defined MNV-3 has limited further studies on the identification of viral sequences that contribute to persistence. Here we report the establishment of a combined DNA-based reverse-genetics and mouse-model system to study persistent MNV-3 infections in wild-type (C57BL/6) mice. Viral RNA and infectious virus were detected in faeces for at least 56 days after inoculation. Strikingly, the highest concentrations of viral RNA during persistence were detected in the caecum and colon, suggesting that viral persistence is maintained in these tissues. Possible adaptive changes arising during persistence in vivo appeared to accumulate in the minor capsid protein (VP2) and the viral polymerase (NS7), in contrast with adaptive mutations selected during cell-culture passages in RAW264.7 cells that appeared in the major capsid protein (VP1) and non-structural protein NS4. This system provides an attractive model that can be readily used to identify viral sequences that contribute to persistence in an immunocompetent host and to more acute infection in an immunocompromised host, providing new insights into the biology of norovirus infections.

Abstract

A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull down assays using recombinant proteins and immunoprecipitation of endogenous proteins followed by mass spectrometry identification(1). Recent studies have highlighted the utility of double-affinity tag mediated purification, coupled with two specific elution steps in the identification of interacting proteins. This approach, termed Tandem Affinity Purification (TAP), was initially used in yeast(2,3) but more recently has been adapted to use in mammalian cells(4-8). As proof-of-concept we have established a tandem affinity purification (TAP) method using the well-characterized eukaryotic translation initiation factor eIF4E(9,10).The cellular translation factor eIF4E is a critical component of the cellular eIF4F complex involved in cap-dependent translation initiation(10). The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence(8). To forgo the need for the generation of clonal cell lines, we developed a rapid system that relies on the expression of the TAP-tagged bait protein from an episomally maintained plasmid based on pMEP4 (Invitrogen). Expression of tagged murine eIF4E from this plasmid was controlled using the cadmium chloride inducible metallothionein promoter. Lysis of the expressing cells and subsequent affinity purification via binding to rabbit IgG agarose, TEV protease cleavage, binding to streptavidin linked agarose and subsequent biotin elution identified numerous proteins apparently specific to the eIF4E pull-down (when compared to control cell lines expressing the TAP tag alone). The identities of the proteins were obtained by excision of the bands from 1D SDS-PAGE and subsequent tandem mass spectrometry. The identified components included the known eIF4E binding proteins eIF4G and 4EBP-1. In addition, other components of the eIF4F complex, of which eIF4E is a component were identified, namely eIF4A and Poly-A binding protein. The ability to identify not only known direct binding partners as well as secondary interacting proteins, further highlights the utility of this approach in the characterization of proteins of unknown function.

Abstract

Human noroviruses (HuNoV) are a major cause of nonbacterial gastroenteritis worldwide, yet details of the life cycle and replication of HuNoV are relatively unknown due to the lack of an efficient cell culture system. Studies with murine norovirus (MNV), which can be propagated in permissive cells, have begun to probe different aspects of the norovirus life cycle; however, our understanding of the specific functions of the viral proteins lags far behind that of other RNA viruses. Genome-wide functional profiling by insertional mutagenesis can reveal protein domains essential for replication and can lead to generation of tagged viruses, which has not yet been achieved for noroviruses. Here, transposon-mediated insertional mutagenesis was used to create 5 libraries of mutagenized MNV infectious clones, each containing a 15-nucleotide sequence randomly inserted within a defined region of the genome. Infectious virus was recovered from each library and was subsequently passaged in cell culture to determine the effect of each insertion by insertion-specific fluorescent PCR profiling. Genome-wide profiling of over 2,000 insertions revealed essential protein domains and confirmed known functional motifs. As validation, several insertion sites were introduced into a wild-type clone, successfully allowing the recovery of infectious virus. Screening of a number of reporter proteins and epitope tags led to the generation of the first infectious epitope-tagged noroviruses carrying the FLAG epitope tag in either NS4 or VP2. Subsequent work confirmed that epitope-tagged fully infectious noroviruses may be of use in the dissection of the molecular interactions that occur within the viral replication complex.

Shaw A E, Veronesi E, Maurin G, Ftaich N, Guiguen F, Rixon F, Ratinier M, Mertens P, Carpenter S, Palmarini M, Terzian C, Arnaud F (2012)

Drosophila melanogaster as a model organism for bluetongue virus replication and tropism

Journal of Virology 86 (17), 9015-9024

Abstract

Bluetongue virus (BTV) is the etiological agent of bluetongue (BT), a hemorrhagic disease of ruminants that can cause high levels of morbidity and mortality. BTV is an arbovirus transmitted between its ruminant hosts by Culicoides biting midges (Diptera: Ceratopogonidae). Recently, Europe has experienced some of the largest BT outbreaks ever recorded, including areas with no known history of the disease, leading to unprecedented economic and animal welfare issues. The current lack of genomic resources and genetic tools for Culicoides restricts any detailed study of the mechanisms involved in the virus-insect interactions. In contrast, the genome of the fruit fly (Drosophila melanogaster) has been successfully sequenced, and it is used extensively as a model of molecular pathways due to the existence of powerful genetic technology. In this study, D. melanogaster is investigated as a model for the replication and tropism of BTV. Using reverse genetics, a modified BTV-1 that expresses the fluorescent mCherry protein fused to the viral nonstructural protein NS3 (BTV-1/NS3mCherry) was generated. We demonstrate that BTV-1/NS3mCherry is not only replication competent as it retains many characteristics of the wild-type virus but also replicates efficiently in D. melanogaster after removal of the bacterial endosymbiont Wolbachia pipientis by antibiotic treatment. Furthermore, confocal microscopy shows that the tissue tropism of BTV-1/NS3mCherry in D. melanogaster resembles that described previously for BTV in Culicoides. Overall, the data presented in this study demonstrate the feasibility of using D. melanogaster as a genetic model to investigate BTV-insect interactions that cannot be otherwise addressed in vector species.

Abstract

Influenza viruses readily mutate by accumulating point mutations and also by reassortment in which they acquire whole gene segments from another virus in a co-infected host. The NS1 gene is a major virulence factor of influenza A virus. The effects of changes in NS1 sequence depend on the influenza polymerase constellation. Here, we investigated the consequences of a virus with the polymerase of pandemic H1N1 2009 acquiring an NS gene segment derived from a seasonal influenza A H3N2 virus, a combination that might arise during natural reassortment of viruses that currently circulate in humans. We generated recombinant influenza viruses with surface HA and NA genes and matrix M gene segment from A/PR/8/34 virus, but different combinations of polymerase and NS genes. Thus, any changes in phenotype were not due to differences in receptor use, entry, uncoating or virus release. In Madin-Darby canine kidney (MDCK) cells, the virus with the NS gene from the H3N2 parent showed enhanced replication, probably a result of increased control of the interferon response. However, in mice the same virus was attenuated in comparison with the virus containing homologous pH1N1 polymerase and NS genes. Levels of viral RNA during single-cycles of replication were lower for the virus with H3N2 NS, and this virus reached lower titres in the lungs of infected mice. Thus, virus with pH1N1 polymerase genes did not increase its virulence by acquiring the H3N2 NS gene segment, and MDCK cells were a poor predictor of the outcome of infection in vivo.

Abstract

Bovine tuberculosis is a disease of increasing incidence in the UK causing major economic losses and with significant impact on bovine and, potentially human health: the causative agent Mycobacterium bovis is a zoonotic pathogen. Neonatal vaccination with the attenuated M. bovis Bacille Calmette Guerin (BCG) vaccine confers a significant degree of protection in cattle, and is a widely used control strategy for human TB. The adaptive immune system is relatively immature in neonates and increased numbers of innate effector cells present in young animals and human infants may compensate for this, enabling effective immune responses to vaccination. Natural killer cells and subsets of ?? TCR+ T lymphocytes secrete high levels of interferon gamma and can interact with antigen presenting cells to promote both innate and adaptive immune responses. These cell populations may be pivotal in determining immune bias following neonatal vaccination with BCG
Sigrist B, Tobler K, Schybli M, Konrad L, Stoeckli R, Cattoli G, Lueschow D, Hafez H M, Britton P, Hoop R K, Voegtlin A (2012)

Detection of avian coronavirus infectious bronchitis virus type QX infection in Switzerland

Journal of Veterinary Diagnostic Investigation 24 (6), 1180-1183

Abstract

Infectious bronchitis, a disease of chickens caused by Avian coronavirus infectious bronchitis virus (IBV), leads to severe economic losses for the poultry industry worldwide. Various attempts to control the virus based on vaccination strategies are performed. However, due to the emergence of novel genotypes, an effective control of the virus is hindered. In 1996, a novel viral genotype named IBV-QX was reported for the first time in Qingdao, Shandong province, China. The first appearance of an IBV-QX isolate in Europe was reported between 2003 and 2004 in The Netherlands. Subsequently, infections with this genotype were found in several other European countries such as France, Italy, Germany, United Kingdom, Slovenia, and Sweden. The present report describes the use of a new set of degenerate primers that amplify a 636-bp fragment within the S1 gene by reverse transcription polymerase chain reaction to detect the occurrence of IBV-QX infection in Switzerland.

Abstract

Capripoxviruses, which are endemic in much of Africa and Asia, are the aetiological agents of economically devastating poxviral diseases in cattle, sheep and goats. The aim of this study was to validate a high-throughput real-time PCR assay for routine diagnostic use in a capripoxvirus reference laboratory. The performance of two previously published real-time PCR methods were compared using commercially available reagents including the amplification kits recommended in the original publication. Furthermore, both manual and robotic extraction methods used to prepare template nucleic acid were evaluated using samples collected from experimentally infected animals. The optimised assay had an analytical sensitivity of at least 63 target DNA copies per reaction, displayed a greater diagnostic sensitivity compared to conventional gel-based PCR, detected capripoxviruses isolated from outbreaks around the world and did not amplify DNA from related viruses in the genera Orthopoxvirus or Parapoxvirus. The high-throughput robotic DNA extraction procedure did not adversely affect the sensitivity of the assay compared to manual preparation of PCR templates. This laboratory-based assay provides a rapid and robust method to detect capripoxviruses following suspicion of disease in endemic or disease-free countries.

Abstract

piggyBac, a type II transposon that is useful for efficient transgenesis and insertional mutagenesis, has been used for effective and stable transfection in a wide variety of organisms. In this study we investigate the potential use of the piggyBac transposon system for forward genetics studies in the apicomplexan parasite Eimeria tenella. Using the restriction enzyme-mediated integration (REMI) method, E. tenella sporozoites were electroporated with a donor plasmid containing the enhanced yellow fluorescent protein (EYFP) gene flanked by piggyBac inverted terminal repeats (ITRs), an Asc I-linearized helper plasmid containing the transposase gene and the restriction enzyme Asc I. Subsequently, electroporated sporozoites were inoculated into chickens via the cloacal route and transfected progeny oocysts expressing EYFP were sorted by flow cytometry. A transgenic E. tenella population was selected by successive in vivo passage. Southern-blotting analysis showed that exogenous DNA containing the EYFP gene was integrated into the parasite genome at a limited number of integration sites and that the inserted part of the donor plasmid was the fragment located between the 5? and 3? ITRs as indicated by primer-specific PCR screening. Genome walking revealed that the insertion sites were TTAA-specific, which is consistent with the transposition characteristics of piggyBac
te Pas M, Hulsegge I, Schokker D, Smits M, Fife M, Zoorob R, Endale M-L, Rebel J (2012)

Meta-analysis of chicken - Salmonella infection experiments

BMC Genomics 13 (1), e146

Abstract

BACKGROUND:Chicken meat and eggs can be a source of human zoonotic pathogens, especially Salmonella species. These food items contain a potential hazard for humans. Chickens lines differ in susceptibility for Salmonella and can harbor Salmonella pathogens without showing clinical signs of illness. Many investigations including genomic studies have examined the mechanisms how chickens react to infection. Apart from the innate immune response, many physiological mechanisms and pathways are reported to be involved in the chicken host response to Salmonella infection. The objective of this study was to perform a meta-analysis of diverse experiments to identify general and host specific mechanisms to the Salmonella challenge.RESULTS:Diverse chicken lines differing in susceptibility to Salmonella infection were challenged with different Salmonella serovars at several time points. Various tissues were sampled at different time points post-infection, and resulting host transcriptional differences investigated using different microarray platforms. The meta-analysis was performed with the R-package metaMA to create lists of differentially regulated genes. These gene lists showed many similarities for different chicken breeds and tissues, and also for different Salmonella serovars measured at different times post infection. Functional biological analysis of these differentially expressed gene lists revealed several common mechanisms for the chicken host response to Salmonella infection. The meta-analysis-specific genes (i.e. genes found differentially expressed only in the meta-analysis) confirmed and expanded the biological functional mechanisms.CONCLUSIONS:The meta-analysis combination of heterogeneous expression profiling data provided useful insights into the common metabolic pathways and functions of different chicken lines infected with different Salmonella serovars.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.