Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2604 results for your search.
te Pas M, Hulsegge I, Schokker D, Smits M, Fife M, Zoorob R, Endale M-L, Rebel J (2012)

Meta-analysis of chicken - Salmonella infection experiments

BMC Genomics 13 (1), e146

Abstract

BACKGROUND:Chicken meat and eggs can be a source of human zoonotic pathogens, especially Salmonella species. These food items contain a potential hazard for humans. Chickens lines differ in susceptibility for Salmonella and can harbor Salmonella pathogens without showing clinical signs of illness. Many investigations including genomic studies have examined the mechanisms how chickens react to infection. Apart from the innate immune response, many physiological mechanisms and pathways are reported to be involved in the chicken host response to Salmonella infection. The objective of this study was to perform a meta-analysis of diverse experiments to identify general and host specific mechanisms to the Salmonella challenge.RESULTS:Diverse chicken lines differing in susceptibility to Salmonella infection were challenged with different Salmonella serovars at several time points. Various tissues were sampled at different time points post-infection, and resulting host transcriptional differences investigated using different microarray platforms. The meta-analysis was performed with the R-package metaMA to create lists of differentially regulated genes. These gene lists showed many similarities for different chicken breeds and tissues, and also for different Salmonella serovars measured at different times post infection. Functional biological analysis of these differentially expressed gene lists revealed several common mechanisms for the chicken host response to Salmonella infection. The meta-analysis-specific genes (i.e. genes found differentially expressed only in the meta-analysis) confirmed and expanded the biological functional mechanisms.CONCLUSIONS:The meta-analysis combination of heterogeneous expression profiling data provided useful insights into the common metabolic pathways and functions of different chicken lines infected with different Salmonella serovars.

Abstract

Background: The serovars Enteritidis and Typhimurium of the Gram-negative bacterium Salmonella enterica are significant causes of human food poisoning. Fowl carrying these bacteria often show no clinical disease, with detection only established post-mortem. Increased resistance to the carrier state in commercial poultry could be a way to improve food safety by reducing the spread of these bacteria in poultry flocks. Previous studies identified QTLs for both resistance to carrier state and resistance to Salmonella colonization in the same White Leghorn inbred lines. Until now, none of the QTLs identified was common to the two types of resistance. All these analyses were performed using the F2 inbred or backcross option of the QTLExpress software based on linear regression. In the present study, QTL analysis was achieved using Maximum Likelihood with QTLMap software, in order to test the effect of the QTL analysis method on QTL detection. We analyzed the same phenotypic and genotypic data as those used in previous studies, which were collected on 378 animals genotyped with 480 genome-wide SNP markers. To enrich these data, we added eleven SNP markers located within QTLs controlling resistance to colonization and we looked for potential candidate genes co-localizing with QTLs. Results: In our case the QTL analysis method had an important impact on QTL detection. We were able to identify new genomic regions controlling resistance to carrier-state, in particular by testing the existence of two segregating QTLs. But some of the previously identified QTLs were not confirmed. Interestingly, two QTLs were detected on chromosomes 2 and 3, close to the locations of the major QTLs controlling resistance to colonization and to candidate genes involved in the immune response identified in other, independent studies. Conclusions: Due to the lack of stability of the QTLs detected, we suggest that interesting regions for further studies are those that were identified in several independent studies, which is the case of the QTL regions on chromosomes 2 and 3, involved in resistance to both Salmonella colonization and carrier state. These observations provide evidence of common genes controlling S. Typhimurium colonization and S. Enteritidis carrier-state in chickens.

Abstract

Vaccination of neonatal calves with Mycobacterium bovis bacillus Calmette-Guerin (BCG) induces a significant degree of protection against bovine tuberculosis, caused by infection with virulent M. bovis. In two independent experiments, we assessed the duration of the protective immunity induced in calves by neonatal vaccination with BCG Danish. Protection from disease was assessed at 12 and 24 months postvaccination in cattle challenged via the endotracheal route with M. bovis. We also assessed antigen-specific immune responses to assess their utility as correlates of protection. At 12 months postvaccination, significant reductions in lung and lymph node pathologies were observed compared to nonvaccinated M. bovis-challenged control cattle. At 24 months post-BCG vaccination, there was a reduction in lung and lymph node pathology scores and in bacterial burden. However, when comparing vaccinated and control groups, this did not reach statistical significance. Vaccination induced long-lived antigen (purified protein derivative [PPD])-specific gamma interferon (IFN-gamma) release in whole-blood cultures, which remained above baseline levels for more than 20 months (approximately 90 weeks). The number of antigen-specific IFN-gamma-secreting central memory T cells present at the time of M. bovis challenge was significantly higher in vaccinated than in control animals at 12 months postvaccination, but not at 24 months. Vaccination of neonatal calves with BCG Danish induced protective immune responses against bovine TB which were maintained for at least 12 months postvaccination. These studies provide data on the immunity induced by BCG vaccination in calves; the results could inform vaccination strategies for the control of bovine TB in United Kingdom cattle herds.

Abstract

Lumpy skin disease (LSD) is an economically devastating emerging viral disease of cattle. Lumpy skin disease is currently endemic in most African countries and has recently spread out of Africa into the Middle East region. In this article, we review the putative mechanisms of spread of LSD into the Middle East and the risks of further spread into Turkey, Europe and Asia. We also review the latest findings on the epidemiology of LSD, its mechanisms of transmission, the potential role of wildlife in its maintenance and spread and the diagnostic tests and control methods currently available.

Abstract

Two foot-and-mouth disease virus (FMDV) genome sequences have been determined for isolates collected from recent field outbreaks in North Africa (Egypt) and the Middle East (Palestinian Autonomous Territories). These data represent the first examples of complete genomic sequences for the FMDV SAT 2 topotype VII, which is thought to be endemic in countries immediately to the south of the Sahara desert. Further studies are now urgently required to provide insights into the epidemiological links between these outbreaks and to define the pathogenicity of this emerging lineage.

Abstract

Improvements to sequencing protocols and the development of computational phylogenetics have opened up opportunities to study the rapid evolution of RNA viruses in real time. In practical terms, these results can be combined with field data in order to reconstruct spatiotemporal scenarios that describe the origin and transmission pathways of viruses during an epidemic. In the case of notifiable diseases, such as foot-and-mouth disease (FMD), these analyses provide important insights into the epidemiology of field outbreaks that can support disease control programmes. This study reconstructs the origin and transmission history of the FMD outbreaks which occurred during 2011 in Burgas Province, Bulgaria, a country that had been previously FMD-free-without-vaccination since 1996. Nineteen full genome sequences (FGS) of FMD virus (FMDV) were generated and analysed, including eight representative viruses from all of the virus-positive outbreaks of the disease in the country and 11 closely-related contemporary viruses from countries in the region where FMD is endemic (Turkey and Israel). All Bulgarian sequences shared a single putative common ancestor which was closely related to the index case identified in wild boar. The closest relative from outside of Bulgaria was a FMDV collected during 2010 in Bursa (Anatolia, Turkey). Within Bulgaria, two discrete genetic clusters were detected that corresponded to two episodes of outbreaks that occurred during January and March-April 2011. The number of nucleotide substitutions that were present between, and within, these separate clusters provided evidence that undetected FMDV infection had occurred. These conclusions are supported by laboratory data that subsequently identified three additional FMDV-infected livestock premises by serosurveillance, as well as a number of antibody positive wild boar on both sides of the border with Turkish Thrace. This study highlights how FGS analysis can be used as an effective on-the-spot tool to support and help direct epidemiological investigations of field outbreaks.
Walter T S, Ren J, Tuthill T J, Rowlands D J, Stuart D I, Fry E E (2012)

A plate-based high-throughput assay for virus stability and vaccine formulation

Journal of Virological Methods 185 (1), 166-170

Abstract

Standard methods for assessing the thermal stability of viruses can be time consuming and rather qualitative yet such data is a necessary requisite for vaccine formulation. In this study a novel plate-based thermal scanning assay for virus particle stability has been developed (PaSTRy: Particle Stability Thermal Release Assay). Two environment-sensitive fluorescent dyes, with non-overlapping emission spectra and different affinities, are used to accrue simultaneously independent data for the overall stability of the virus capsid, as judged by the exposure of the genome, and for capsid protein stability according to the exposure of hydrophobic side chains which are normally buried. This offers a fast and efficient high-throughput method to optimise vaccine formulation and to investigate the processes of virus uncoating.

Abstract

Infection of cells with African swine fever virus (ASFV) can lead to the formation of zipper-like stacks of structural proteins attached to collapsed endoplasmic reticulum (ER) cisternae. We show that the collapse of ER cisternae observed during ASFV infection is dependent on the viral envelope protein, J13Lp. Expression of J13Lp alone in cells is sufficient to induce collapsed ER cisternae. Collapse was dependent on a cysteine residue in the N-terminal domain of J13Lp exposed to the ER lumen. Luminal collapse was also dependent on the expression of J13Lp within stacks of ER where antiparallel interactions between the cytoplasmic domains of J13Lp orientated N-terminal domains across ER cisternae. Cisternal collapse was then driven by disulphide bonds between N-terminal domains arranged in antiparallel arrays across the ER lumen. This provides a novel mechanism for biogenesis of modified stacks of ER present in cells infected with ASFV, and may also be relevant to cellular processes.
Yao Y, Smith L P, Petherbridge L, Watson M, Nair V (2012)

Novel microRNAs encoded by duck enteritis virus

Journal of General Virology 93, 1530-1536

Abstract

Duck enteritis virus (DEV) is an important herpesvirus pathogen associated with acute, highly contagious lethal disease in waterfowls. Using a deep sequencing approach on RNA from infected chicken embryo fibroblast cultures, we identified several novel DEV-encoded micro (mi)RNAs. Unlike most mardivirus-encoded miRNAs, DEV-encoded miRNAs mapped mostly to the unique long region of the genome. The precursors of DEV miR-D18 and miR-D19 overlapped with each other, suggesting similarities to miRNA-offset RNAs, although only the DEV-miR-D18-3p was functional in reporter assays. Identification of these novel miRNAs will add to the growing list of virus-encoded miRNAs enabling the exploration of their roles in pathogenesis.

Abstract

During the incursion of bluetongue virus (BTV) serotype 8 in France in 2007, an increase in the number of abortions in cattle was observed, but the cause was not clearly established. A survey of all the reported cases of abortion in cattle from November 2008 to April 2009 was conducted in the Nièvre district (Burgundy region) to determine the percentage of abortions as a result of BTV-8 and to study factors that could have played a role in BTV-8 transplacental transmission. BTV-8 was present in 16% of the fetuses or newborn calves that died within 48 h, from 780 dams. Dams inseminated before the BTV epizootic peak recorded from July to September 2008 were more likely to have BTV-positive abortions (OR=5.7, P

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.