Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2603 results for your search.
Ferretti L, Ramos-Onsins S E, Perez-Enciso M (2013)

Population genomics from pool sequencing

Molecular Ecology 22 (22), 5561-5576

Abstract

Next generation sequencing of pooled samples is an effective approach for studies of variability and differentiation in populations. In this paper we provide a comprehensive set of estimators of the most common statistics in population genetics based on the frequency spectrum, namely the Watterson estimator W, nucleotide pairwise diversity , Tajima's D, Fu and Li's D and F, Fay and Wu's H, McDonald-Kreitman and HKA tests and FST, corrected for sequencing errors and ascertainment bias. In a simulation study, we show that pool and individual estimates are highly correlated and discuss how the performance of the statistics vary with read depth and sample size in different evolutionary scenarios. As an application, we reanalyse sequences from Drosophila mauritiana and from an evolution experiment in Drosophila melanogaster. These methods are useful for population genetic projects with limited budget, study of communities of individuals that are hard to isolate, or autopolyploid species.

Abstract

African swine fever virus (ASFV) is the only member of the Asfarviridae, a large DNA virus family which replicates predominantly in the cytoplasm. Most isolates cause a fatal haemorrhagic disease in domestic pigs, although some low virulence isolates cause little or no mortality. The modulation of chemokine responses following infection of porcine macrophages with low and high virulence isolates was studied to indicate how this may be involved in the induction of pathogenesis and of effective immune responses. Infection with both low and high virulence isolates resulted in down-regulation of mRNA levels for chemokines CCL2, CCL3L, CXCL2 and chemokine receptors CCR1, CCR5, CXCR3, CXCR4 and up-regulation in expression of mRNAs for CCL4, CXCL10 and chemokine receptor CCR7. Levels of CCL4, CXCL8, CXCL10 mRNAs were higher in macrophages infected with low virulence isolate OURT88/3 compared to high virulence isolate Benin 97/1. Levels of CXCL8 and CCL2 protein were significantly reduced in supernatants from macrophages infected with Benin 97/1 isolate compared to OURT88/3 and mock-infected macrophages. There was also a decreased chemotactic response of donor cells exposed to supernatants from Benin 97/1 infected macrophages compared to those from OURT88/3 and mock-infected macrophages. The data show that infection of macrophages with the low virulence strain OURT88/3 induces higher expression of key inflammatory chemokines compared to infection with high virulence strain Benin 97/1. This may be important for the induction of effective protective immunity that has been observed in pigs immunised with the OURT88/3 isolate.

Abstract

Modulation of the expression of chemokines and chemokine receptors in whole blood was compared following infection of pigs with high and low virulence isolates of African swine fever virus. Levels of mRNAs for CCL2, CCL3L1, CCL4, CXCL10, CCR1 and CCR5 were significantly increased in at least one time point following infection in two experiments and CCL5, CCR9 and CXCR4 mRNA were significantly increased in one of the experiments. The results showed that greatest fold increases in mRNAs for CXCL10 and CCL2 were observed following infection of pigs. CXCL10 mRNA was increased by up to 15 fold in infected compared to uninfected pigs. CXCL10 protein was also detected in serum from pigs infected with the high virulence Benin 97/1 isolate. Levels of CCL2 mRNA were increased in pigs infected with high virulence Benin 97/1 isolate compared to low virulence OURT88/3 isolate and this correlated with an increase of greater than 30 fold in levels of CCL2 protein detected in serum from pigs infected with this isolate. An increase in overall chemotaxis active compounds in defibrinated plasma samples from Benin 97/1 infected pigs was observed at 3 days post-infection (dpi) and a decrease by 7 dpi as measured by chemotaxis assay using normal pig leucocytes in vitro. Increased levels of CXCL10 may either contribute to the activation of lymphocyte priming toward the Th1 phenotype or induction of T lymphocyte apoptosis. Increased levels of CCL2, a chemoattractant for macrophages, may result in increased recruitment of monocytes from bone marrow thus increasing the pool of cells susceptible to infection.

Abstract

Vaccination with live attenuated classical swine fever virus (CSFV) induces solid protection after only 5 days, which has been associated with virus-specific T cell gamma interferon (IFN-gamma) responses. In this study, we employed flow cytometry to characterize T cell responses following vaccination and subsequent challenge infections with virulent CSFV. The CD3(+) CD4(-) CD8(hi) T cell population was the first and major source of CSFV-specific IFN-gamma. A proportion of these cells showed evidence for cytotoxicity, as evidenced by CD107a mobilization, and coexpressed tumor necrosis factor alpha (TNF-alpha). To assess the durability and recall of these responses, a second experiment was conducted where vaccinated animals were challenged with virulent CSFV after 5 days and again after a further 28 days. While virus-specific CD4 T cell (CD3(+) CD4(+) CD8 alpha(+)) responses were detected, the dominant response was again from the CD8 T cell population, with the highest numbers of these cells being detected 14 and 7 days after the primary and secondary challenges, respectively. These CD8 T cells were further characterized as CD44(hi) CD62L(-) and expressed variable levels of CD25 and CD27, indicative of a mixed effector and effector memory phenotype. The majority of virus-specific IFN-gamma(+) CD8 T cells isolated at the peaks of the response after each challenge displayed CD107a on their surface, and subpopulations that coexpressed TNF-alpha and interleukin 2 (IL-2) were identified. While it is hoped that these data will aid the rational design and/or evaluation of next-generation marker CSFV vaccines, the novel flow cytometric panels developed should also be of value in the study of porcine T cell responses to other pathogens/vaccines.

Abstract

Vaccination with live attenuated classical swine fever virus (CSFV) vaccines induces a rapid onset of protection which has been associated with virus-specific CD8 T cell IFN-gamma responses. In this study, we assessed the specificity of this response, by screening a peptide library spanning the CSFV C-strain vaccine polyprotein to identify and characterise CD8 T cell epitopes. Synthetic peptides were pooled to represent each of the 12 CSFV proteins and used to stimulate PBMC from four pigs rendered immune to CSFV by C-strain vaccination and subsequently challenged with the virulent Brescia strain. Significant IFN-gamma expression by CD8 T cells, assessed by flow cytometry, was induced by peptide pools representing the core, E2, NS2, NS3 and NS5A proteins. Dissection of these antigenic peptide pools indicated that, in each instance, a single discrete antigenic peptide or pair of overlapping peptides was responsible for the IFN-gamma induction. Screening and titration of antigenic peptides or truncated derivatives identified the following antigenic regions: core(241-255) PESRKKLEKALLAWA and NS3(1902-1912) VEYSFIFLDEY, or minimal length antigenic peptides: E2(996-1003) YEPRDSYF, NS2(1223-1230) STVTGIFL and NS5A(3070-3078) RVDNALLKF. The epitopes are highly conserved across CSFV strains and variable sequence divergence was observed with related pestiviruses. Characterisation of epitope-specific CD8 T cells revealed evidence of cytotoxicity, as determined by CD107a mobilisation, and a significant proportion expressed TNF-alpha in addition to IFN-gamma. Finally, the variability in the antigen-specificity of these immunodominant CD8 T cell responses was confirmed to be associated with expression of distinct MHC class I haplotypes. Moreover, recognition of NS2(1223-1230) STVTGIFL and NS3(1902-1912) VEYSFIFLDEY by a larger group of C-strain vaccinated animals showed that these peptides could be restricted by additional haplotypes. Thus the antigenic regions and epitopes identified represent attractive targets for evaluation of their vaccine potential against CSFV.

Abstract

Sheep pox virus (SPPV), goat pox virus (GTPV) and lumpy skin disease virus (LSDV) are very closely related viruses of the Capripoxvirus (CaPV) genus of the Poxviridae family. They are responsible for sheep pox, goat pox and lumpy skin disease which affect sheep, goat and cattle, respectively. The epidemiology of capripox diseases is complex, as some CaPVs are not strictly host-specific. Additionally, the three forms of the disease co-exist in many sub-Saharan countries which complicates the identification of the virus responsible for an outbreak. Genotyping of CaPVs using a low-cost, rapid, highly specific, and easy to perform method allows a swift and accurate identification of the causative agent and significantly assists in selecting appropriate control and eradication measures, such as the most suitable vaccine against the virus during the outbreaks. The objective of this paper is to describe the design and analytical performances of a new molecular assay for CaPV genotyping using unlabelled snapback primers in the presence of dsDNA intercalating EvaGreen dye. This assay was able to simultaneously detect and genotype CaPVs in 63 samples with a sensitivity and specificity of 100%. The genotyping was achieved by observing the melting temperature of snapback stems of the hairpins and those of the full-length amplicons, respectively. Fourteen CaPVs were genotyped as SPPVs, 25 as GTPVs and 24 as LSDVs. The method is highly pathogen specific and cross platform compatible. It is also cost effective as it does not use fluorescently labelled probes, nor require high-resolution melting curve analysis software. Thus it can be easily performed in diagnostic and research laboratories with limited resources. This genotyping method will contribute significantly to the early detection and genotyping of CaPV infection and to epidemiological studies.
Gomez-Villamandos J C, Bautista M J, Sanchez-Cordon P J, Carrasco L (2013)

Pathology of African swine fever: The role of monocyte-macrophage

Virus Research 173 (1), 140-149

Abstract

African swine fever (ASF) is a viral hemorrhagic disease with different clinical and lesional changes depending of virulence of strains/isolates and immunological status of pigs. In acute and subacute forms of ASF, severe vascular changes are present, with hemorrhages in different organs (mainly melena, epistaxis, erythema, renal petechiaes and diffuse hemorrhages in lymph nodes), pulmonary edema, disseminate intravascular coagulation and thrombocytopenia. Lymphopenia and monocytopenia are developed during acute and subacute ASF. Lymphopenia is associated with lymphoid depletion in primary and secondary lymphoid organs, which is caused by apoptosis. All these lesions are not related to viral replication in endothelial cells or lymphocytes. Monocytes-macrophages show viral replication and cytophatic effect, including hemadsorption. The more significant changes in these cells are increased number and secretory activation (increased levels of proinflammatory cytokines) in targets organs. Proinflammatory activation is the initial cause of clinical and lesional pictures in ASF, including fever and changes in levels of acute phase proteins. Levels of IFN-beta and -gamma are increased from initial phase of acute ASF. Anti-inflammatory response, represented by increased level of IL-10, is observed also, although in the final phase of acute ASF only.
Griffiths S J, Koegl M, Boutell C, Zenner H L, Crump C M, Pica F, Gonzalez O, Friedel C C, Barry G, Martin K, Craigon M H, Chen R, Kaza L N, Fossum E, Fazakerley J K, Efstathiou S, Volpi A, Zimmer R, Ghazal P, Haas J (2013)

A systematic analysis of host factors reveals a med23-interferon-? regulatory axis against herpes simplex virus type 1 replication

PLoS Pathogens 9 (8), e1003514

Abstract

Herpes simplex virus type 1 (HSV-1) infects the vast majority of the global population. Whilst most people experience the relatively mild symptoms of cold sores, some individuals suffer more serious diseases like viral meningitis and encephalitis. HSV-1 is also becoming more common as a cause of genital herpes, traditionally associated with HSV-2 infection. Co-infection with HSV-2 is a major contributor to HIV transmission, so a better understanding of HSV-1/HSV-2 disease has wide implications for global healthcare. After initial infection, all herpesviruses have the ability to remain dormant, and can awaken to cause a symptomatic infection at any stage. Whether the virus remains dormant or active is the result of a finely tuned balance between our immune system and evasion techniques developed by the virus. In this study we have found a new method by which the replication of the virus is counteracted. The cellular protein Med23 was found to actively induce an innate anti-viral immune response in the form of the Type III interferons (IFN-lambda), by binding IRF7, a key regulator of interferons, and modulating its activity. Interferon lambda is well known to be important in the control of Hepatitis C infection, and a genetic mutation correlating to an increase in interferon lambda levels is strongly linked to clearance of infection. Here we find the same association between this genetic mutation and the clinical severity of recurrent cases of HSV-1 infection (coldsores). These data identify a Med23-interferon lambda regulatory axis of innate immunity, show that interferon lambda plays a significant role in HSV-1 infection, and contribute to the expanding evidence for interferon lambda in disease control.

Abstract

Current strategies to control classical scrapie remove animals at risk of scrapie rather than those known to be infected with the scrapie agent. Advances in diagnostic tests, however, suggest that a more targeted approach involving the application of a rapid live test may be feasible in future. Here we consider the use of two diagnostic tests: recto-anal mucosa-associated lymphatic tissue (RAMALT) biopsies; and a blood-based assay. To assess their impact we developed a stochastic age- and prion protein (PrP) genotype-structured model for the dynamics of scrapie within a sheep flock. Parameters were estimated in a Bayesian framework to facilitate integration of a number of disparate datasets and to allow parameter uncertainty to be incorporated in model predictions. In small flocks a control strategy based on removal of clinical cases was sufficient to control disease and more stringent measures (including the use of a live diagnostic test) did not significantly reduce outbreak size or duration. In medium or large flocks strategies in which a large proportion of animals are tested with either live diagnostic test significantly reduced outbreak size, but not always duration, compared with removal of clinical cases. However, the current Compulsory Scrapie Flocks Scheme (CSFS) significantly reduced outbreak size and duration compared with both removal of clinical cases and all strategies using a live diagnostic test. Accordingly, under the assumptions made in the present study there is little benefit from implementing a control strategy which makes use of a live diagnostic test.

Abstract

A single-step, multiplex, real-time polymerase chain reaction (RT-PCR) was developed for the simultaneous and differential laboratory diagnosis of Classical swine fever virus (CSFV) and African swine fever virus (ASFV) alongside an exogenous internal control RNA (IC-RNA). Combining a single extraction methodology and primer and probe sets for detection of the three target nucleic acids CSFV, ASFV and IC-RNA, had no effect on the analytical sensitivity of the assay and the new triplex RT-PCR was comparable to standard PCR techniques for CSFV and ASFV diagnosis. After optimisation the assay had a detection limit of 5 CSFV genome copies and 22 ASFV genome copies. Analytical specificity of the triplex assay was validated using a panel of viruses representing 9 of the 11 CSFV subgenotypes, at least 8 of the 22 ASFV genotypes as well as non-CSFV pestiviruses. Positive and negative clinical samples from animals infected experimentally, due to field exposure or collected from the UK which is free from both swine diseases, were used to evaluate the diagnostic sensitivity and specificity for detection of both viruses. The diagnostic sensitivity was 100% for both viruses whilst diagnostic specificity estimates were 100% for CSFV detection and 97.3% for ASFV detection. The inclusion of a heterologous internal control allowed identification of false negative results, which occurred at a higher level than expected. The triplex assay described here offers a valuable new tool for the differential detection of the causative viruses of two clinically indistinguishable porcine diseases, whose geographical occurrence is increasingly overlapping.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.