Fay P C, Mohd Jaafar F, Batten C, Attoui H, Saunders K, Lomonossoff G P, Reid E, Horton D, Maan S, Haig D, Daly J M, Mertens P P C (2021)

Serological cross-reactions between expressed VP2 proteins from different bluetongue virus serotypes

Viruses 13 (8), 1455
Publisher’s version: https://doi.org/10.3390/v13081455

Abstract

Bluetongue (BT) is a severe and economically important disease of ruminants that is widely distributed around the world, caused by the bluetongue virus (BTV). More than 28 different BTV serotypes have been identified in serum neutralisation tests (SNT), which, along with geographic variants (topotypes) within each serotype, reflect differences in BTV outer-capsid protein VP2. VP2 is the primary target for neutralising antibodies, although the basis for cross-reactions and serological variations between and within BTV serotypes is poorly understood. Recombinant BTV VP2 proteins (rVP2) were expressed in Nicotiana benthamiana, based on sequence data for isolates of thirteen BTV serotypes (primarily from Europe), including three ‘novel’ serotypes (BTV-25, -26 and -27) and alternative topotypes of four serotypes. Cross-reactions within and between these viruses were explored using rabbit anti-rVP2 sera and post BTV-infection sheep reference-antisera, in I-ELISA (with rVP2 target antigens) and SNT (with reference strains of BTV-1 to -24, -26 and -27). Strong reactions were generally detected with homologous rVP2 proteins or virus strains/serotypes. The sheep antisera were largely serotype-specific in SNT, but more cross-reactive by ELISA. Rabbit antisera were more cross-reactive in SNT, and showed widespread, high titre cross-reactions against homologous and heterologous rVP2 proteins in ELISA. Results were analysed and visualised by antigenic cartography, showing closer relationships in some, but not all cases, between VP2 topotypes within the same serotype, and between serotypes belonging to the same ‘VP2 nucleotype’.

Colenutt C, Brown E, Paton D J, Mahapatra M, Parida S, Nelson N, Maud J, Motta P, Sumption K, Adhikari B, Kafle S C, Upadhyaya M, Pandey S K, Gubbins S (2021)

Environmental sampling for the detection of foot-and-mouth disease virus and peste des petits ruminants virus in a live goat market, Nepal

Transboundary and Emerging Diseases early view
Publisher’s version: https://doi.org/10.1111/tbed.14257

Abstract

Livestock markets are considered vital parts of the agricultural economy, particularly in developing countries where livestock keeping contributes to both food security and economic stability. Animals from diverse sources are moved to markets, they mix while they are there and are subsequently redistributed over wide geographic areas. Consequently, markets provide an opportunity for targeted surveillance for circulating pathogens. This study investigated the use of environmental sampling at a live goat market in Nepal for the detection of foot-and-mouth disease virus (FMDV) and peste des petits ruminants virus (PPRV), both of which are endemic. Five visits to the market were carried out between November 2016 and April 2018, with FMDV RNA detected on four visits and PPRV RNA detected on all five visits. Overall, 4.1% of samples (nine out of 217) were positive for FMDV RNA and 60.8% (132 out of 217) were positive for PPRV RNA, though the proportion of positive samples varied amongst visits. These results demonstrate that non-invasive, environmental sampling methods have the potential to be used to detect circulation of high priority livestock diseases at a live animal market and, hence, to contribute to their surveillance and control.

Abstract

The LFBK-αvβ6 cell line is highly sensitive for the isolation of foot-and-mouth disease virus (FMDV) and porcinophilic vesicular viruses. However, LFBK-αvβ6 cells are contaminated with a non-cytopathic bovine viral diarrhea virus (BVDV), which complicates handling procedures in areas where other cell lines are maintained, as well downstream use of viral isolates. In this study, we used an aromatic cationic compound (DB772) to treat LFBK-αvβ6 cells using an approach that has been previously used to eliminate persistent BVDV from fetal fibroblast cell lines. After three cell passages with 4 μM DB772, BVDV could no longer be detected in unclarified cell suspensions using a pan-pestivirus real-time RT-PCR assay, and remained undetectable after treatment was stopped (nine passages) for an additional 28 passages. The analytical sensitivity of the DB772-treated LFBK-αvβ6 cultures (renamed WRL-LFBK-αvβ6) to titrations of FMDV and other vesicular virus isolates was comparable to untreated LFBK-αvβ6 cells. These new BVDV-free cells can be handled without the risk of cross-contaminating other cells lines or reagents, and used for routine diagnostics, in vivo studies and/or preparation of new vaccine strains.

Lello L S, Bartholomeeusen K, Wang S, Coppens S, Fragkoudis R, Alphey L, Ariën K K, Merits A, Utt A (2021)

nsP4 is a major determinant of alphavirus replicase activity and template selectivity

Journal of Virology 95 (20), e0035521

Abstract

Alphaviruses have positive-strand RNA genomes containing two open reading frames (ORFs). The first ORF encodes the non-structural (ns) polyproteins P123 and P1234 that act as precursors for the subunits of the viral RNA replicase (nsP1-nsP4). Processing of P1234 leads to the formation of a negative-strand replicase consisting of nsP4 (RNA polymerase) and P123 components. Subsequent processing of P123 results in a positive-strand replicase. The second ORF encoding the structural proteins is expressed via the synthesis of a subgenomic RNA. Alphavirus replicase is capable of using template RNAs that contain essential cis-active sequences. Here we demonstrate that the replicases of nine alphaviruses, expressed in the form of separate P123 and nsP4 components, are active. Their activity depends on the abundance of nsP4. The match of nsP4 to its template strongly influences efficient subgenomic RNA synthesis. nsP4 of Barmah Forest virus (BFV) formed a functional replicase only with matching P123 while nsP4s of other alphaviruses were compatible also with several heterologous P123s. The P123 components of Venezuelan equine encephalitis virus and Sindbis virus (SINV) required matching nsP4s while P123 of other viruses could form active replicases with different nsP4s. Chimeras of Semliki Forest virus, harboring the nsP4 of chikungunya virus, Ross River virus, BFV or SINV were viable. In contrast, chimeras of SINV, harboring an nsP4 from different alphaviruses, exhibited a temperature-sensitive phenotype. These findings highlight the possibility for formation of new alphaviruses via recombination events and provide a novel approach for the development of attenuated chimeric viruses for vaccination strategies. Importance. A key element of every virus with an RNA genome is the RNA replicase. Understanding the principles of RNA replicase formation and functioning is therefore crucial for understanding and responding to the emergence of new viruses. Reconstruction of the replicases of nine alphaviruses from nsP4 and P123 polyproteins revealed that the nsP4 of the majority of alphaviruses, including the mosquito-specific Eilat virus, could form a functional replicase with P123 originating from a different virus, and the corresponding chimeric viruses were replication-competent. nsP4 also had an evident role in determining the template RNA preference and the efficiency of RNA synthesis. The revealed broad picture of the compatibility of the replicase components of alphaviruses is important for understanding the formation and functioning of the alphavirus RNA replicase and highlights the possibilities for recombination between different alphavirus species.

Le Page L, Gillespie A, Schwartz J C, Prawits L-M, Schlerka A, Farrell C P, Hammond J A, Baldwin C, Telfer J, Hammer S E (2021)

Subpopulations of swine γδ T cells defined by TCRγ and WC1 gene expression

Developmental and Comparative Immunology 125, 104214

Abstract

γδ T cells constitute a major portion of lymphocytes in the blood of both ruminants and swine. Subpopulations of swine γδ T cells have been distinguished by CD2 and CD8α expression. However, it was not clear if they have distinct expression profiles of their T-cell receptor (TCR) or WC1 genes. Identifying receptor expression will contribute to understanding the functional differences between these subpopulations and their contributions to immune protection. Here, we annotated three genomic assemblies of the swine TCRγ gene locus finding four gene cassettes containing C, J and V genes, although some haplotypes carried a null TRGC gene (TRGC4). Genes in the TRGC1 cassette were homologs of bovine TRGC5 cassette while the others were not homologous to bovine genes. Here we evaluated three principal populations of γδ T cells (CD2+/SWC5-, CD2-/SWC5+, and CD2-/SWC5-). Both CD2− subpopulations transcribed WC1 co-receptor genes, albeit with different patterns of gene expression but CD2+ cells did not. All subpopulations transcribed TCR genes from all four cassettes, although there were differences in expression levels. Finally, the CD2+ and CD2− γδ T-cell populations differed in their representation in various organs and tissues, presumably at least partially reflective of different ligand specificities for their receptors.

Lambe T, Spencer A J, Thomas K M, Gooch K E, Thomas S, White A D, Humphries H E, Wright D, Belij-Rammerstorfer S, Thakur N, Conceicao C, Watson R, Alden L, Allen L, Aram M, Bewley K R, Brunt E, Brown P, Cavell B E, Cobb R, Fotheringham S A, Gilbride C, Harris D J, Ho C M K, Hunter L, Kennard C L, Leung S, Lucas V, Ngabo D, Ryan K A, Sharpe H, Sarfas C, Sibley L, Slack G S, Ulaszewska M, Wand N, Wiblin N R, Gleeson F V, Bailey D, Sharpe S, Charlton S, Salguero F J, Carroll M W, Gilbert S C (2021)

ChAdOx1 nCoV-19 protection against SARS-CoV-2 in rhesus macaque and ferret challenge models

Communications Biology 4 (4), 915

Abstract

Vaccines against SARS-CoV-2 are urgently required, but early development of vaccines against SARS-CoV-1 resulted in enhanced disease after vaccination. Careful assessment of this phenomena is warranted for vaccine development against SARS CoV-2. Here we report detailed immune profiling after ChAdOx1 nCoV-19 (AZD1222) and subsequent high dose challenge in two animal models of SARS-CoV-2 mediated disease. We demonstrate in rhesus macaques the lung pathology caused by SARS-CoV-2 mediated pneumonia is reduced by prior vaccination with ChAdOx1 nCoV-19 which induced neutralising antibody responses after a single intramuscular administration. In a second animal model, ferrets, ChAdOx1 nCoV-19 reduced both virus shedding and lung pathology. Antibody titre were boosted by a second dose. Data from these challenge models on the absence of enhanced disease and the detailed immune profiling, support the continued clinical evaluation of ChAdOx1 nCoV-19.

Abstract

African swine fever virus causes a frequently fatal disease of domestic pigs and wild boar that has a high economic impact across 3 continents. The large double-stranded DNA genome codes for approximately 160 proteins. Many of these have unknown functions and this hinders our understanding of the virus and host interactions. The purpose of the study was to evaluate the role of two virus proteins, K145R and DP148R, in virus replication in macrophages and virulence in pigs. To do this, the DP148R gene, alone or in combination with the K145R gene, was deleted from the virulent genotype II Georgia 2007/1 isolate. Neither of these deletions reduced the ability of the viruses to replicate in porcine macrophages compared to the parental wild-type virus. Pigs infected with Georgia?DP148R developed clinical and post-mortem signs and high viremia, typical of acute African swine fever, and were culled on day 6 post-infection. The additional deletion of the K145R gene delayed the onset of clinical signs and viremia in pigs by 3 days, but pigs showed signs of acute African swine fever and were culled on days 10 or 13 post-infection. The results show that the deletion of DP148R did not attenuate the genotype II Georgia 2007/1 isolate, contrary to the results obtained with the genotype I Benin97/1 isolate. Additional deletion of the K145R gene delayed clinical signs, but infected pigs reached the humane endpoint. The deletion of additional genes would be required to attenuate the virus.

Pages

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.