Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2603 results for your search.
Leftwich P T, Koukidou M, Rempoulakis P, Gong H F, Zacharopoulou A, Fu G, Chapman T, Economopoulos A, Vontas J, Alphey L (2014)

Genetic elimination of field-cage populations of Mediterranean fruit flies

Proceedings of the Royal Society B 281 (1792), 20141372

Abstract

The Mediterranean fruit fly (medfly, Ceratitis capitata Wiedemann) is a pest of over 300 fruits, vegetables and nuts. The sterile insect technique (SIT) is a control measure used to reduce the reproductive potential of populations through the mass release of sterilized male insects that mate with wild females. However, SIT flies can display poor field performance, due to the effects of mass-rearing and of the irradiation process used for sterilization. The development of female-lethal RIDL (release of insects carrying a dominant lethal) strains for medfly can overcome many of the problems of SIT associated with irradiation. Here, we present life-history characterizations for two medfly RIDL strains, OX3864A and OX3647Q. Our results show (i) full functionality of RIDL, (ii) equivalency of RIDL and wild-type strains for life-history characteristics, and (iii) a high level of sexual competitiveness against both wild-type and wild-derived males. We also present the first proof-of-principle experiment on the use of RIDL to eliminate medfly populations. Weekly releases of OX3864A males into stable populations of wild-type medfly caused a successive decline in numbers, leading to eradication. The results show that genetic control can provide an effective alternative to SIT for the control of pest insects.

Li X J, Zhang J B, Yang Z W, Kang J T, Jiang S Z, Zhang T, Chen T T, Li M, Lv Q J, Chen X M, McCrae M A, Zhuang H, Lu F M (2014)

The function of targeted host genes determines the oncogenicity of HBV integration in hepatocellular carcinoma

Journal of Hepatology 60 (5), 975-984

Abstract

Although hepatitis B virus (HBV) integration into the human genome has been considered as one of the major causative factors to hepatocarcinogenesis, the underlying mechanism(s) was still elusive. Here we investigate the essential difference(s) of HBV integration between HCC tumor and adjacent non-tumor tissues and explore the factor(s) that determine the oncogenicity of HBV integration. 1115 HBV integration sites were collected from four recent studies. Functional annotation analysis of integration targeted host genes (ITGs) was performed using DAVID based on Gene Ontology and KEGG pathway databases. Array-based expression profiles, real-time qPCR and western blot were used to detect the expression of recurrent integration targeted genes (RTGs). The biological consequences of the overexpression of UBXN8 in 8 HCC cell lines were studied in vitro. HBV is prone to integrate in genic regions (exons, introns, and promoters) and gene-dense regions. Functional annotation analysis reveals that, compared to those in adjacent non-tumor tissues, ITGs in HCC tumor tissues were significantly enriched in functional terms related to negative regulation of cell death, transcription regulation, development and differentiation, and cancer related pathways. 32% of the 75 RTGs identified in this analysis expressed abnormally in HCC tissues. UBXN8, one of the RTGs, was identified as a new tumor suppressor candidate which functions in a TP53 dependent manner. The oncogenicity of HBV integration was determined, to some extend by the function of HBV integration targeted host genes in HCC.

Abstract

Peste des petits ruminants (PPR) constitutes one of the major hurdles to the improvement of small-ruminant production in countries where it is endemic, directly affecting the poor, the main keepers of those species. Despite the existence of highly effective vaccines for more than 25 years, this disease remains a worrying and emerging cause of morbidity and mortality in endemic and high-risk regions of Africa, the Middle East, and Asia.Evolutionary biology of peste des petits ruminants virus (PPRV), the causative agent of PPR, has taught us much in the last 10 years, most notably about its recent evolutionary history and the extent of genetic diversity that lead to the four viral lineages known. Emergence of PPR, an ongoing issue, is disclosed through tracing back viruses belonging to these lineages.It is likely that viral infections are manifested by a variation of clinical patterns, including strains with altered virulence or epidemiological potential and that the virus may eventually emerge in other species. However, there are still major gaps in our knowledge, most notably, the extent and causes of genetic diversity behind the disease dynamics and the evolution/variation in the disease severity.Thus, special attention is to be paid to evolutionary and epidemiological factors underlying PPRV emergence, maintenance and spread, geographic distribution, and disease patterns. Integrated knowledge will provide decision-making tools for better guidance of control efforts against PPR.

Abstract

The expression of surface markers on African swine fever virus (ASFV) infected cells was evaluated to assess their involvement in infection. Previous findings indicated CD163 expression was correlated with ASFV susceptibility. However, in this study the expression of porcine CD163 on cell lines did not increase the infection rate of these cells indicating other factors are likely to be important in determining susceptibility to infection. On adherent porcine bone marrow (pBM) cells the expression of CD45 was strongly correlated with infection. CD163 and CD203a expression correlated at intermediate levels with infection, indicating cells expressing these markers could become infected but were not preferentially infected by the virus. Most of the cells expressing MHCII were infected, indicating that they may be preferentially infected although expression of MHCII was not essential for infection and a large percentage of the infected cells were MHCII negative. CD16 showed a marked decrease in expression following infection and significantly lower levels of infected cells were shown to express CD16. Altogether these results suggest CD163 may be involved in ASFV infection but it may not be essential; the results also highlight the importance of other cell markers which requiring further investigation.

Abstract

Background: Next-Generation Sequencing (NGS) is revolutionizing molecular epidemiology by providing new approaches to undertake whole genome sequencing (WGS) in diagnostic settings for a variety of human and veterinary pathogens. Previous sequencing protocols have been subject to biases such as those encountered during PCR amplification and cell culture, or are restricted by the need for large quantities of starting material. We describe here a simple and robust methodology for the generation of whole genome sequences on the Illumina MiSeq. This protocol is specific for foot-and-mouth disease virus (FMDV) or other polyadenylated RNA viruses and circumvents both the use of PCR and the requirement for large amounts of initial template. Results: The protocol was successfully validated using five FMDV positive clinical samples from the 2001 epidemic in the United Kingdom, as well as a panel of representative viruses from all seven serotypes. In addition, this protocol was successfully used to recover 94% of an FMDV genome that had previously been identified as cell culture negative. Genome sequences from three other non-FMDV polyadenylated RNA viruses (EMCV, ERAV, VESV) were also obtained with minor protocol amendments. We calculated that a minimum coverage depth of 22 reads was required to produce an accurate consensus sequence for FMDV O. This was achieved in 5 FMDV/O/UKG isolates and the type O FMDV from the serotype panel with the exception of the 5' genomic termini and area immediately flanking the poly(C) region. Conclusions: We have developed a universal WGS method for FMDV and other polyadenylated RNA viruses. This method works successfully from a limited quantity of starting material and eliminates the requirement for genome-specific PCR amplification. This protocol has the potential to generate consensus-level sequences within a routine high-throughput diagnostic environment.

Abstract

Lumpy skin disease (LSD) is caused by lumpy skin disease virus (LSDV), a member of the genus Capripoxvirus. Transmission of the virus has been associated with haematophagous insects such as Stomoxys calcitrans as well as Aedes and Culex species of mosquitoes. Recent studies have reported the transmission of the virus by Amblyomma hebraeum, Rhipicephalus appendiculatus, and Rhipicephalus decoloratus ticks and the presence of LSDV in saliva of A. hebraeum and R. appendiculatus ticks. The aim of this study was to determine which tick organs become infected by LSDV following intrastadial infection and transstadial persistence of the virus in A. hebraeum and R. appendiculatus ticks. Nymphal and adult ticks were orally infected by feeding them on LSDV-infected cattle. Partially fed adult ticks were processed for testing while nymphs were fed to repletion and allowed to moult to adults before being processed for testing. The infection in tick organs was determined by testing for the presence of the viral antigen using monoclonal antibodies with immunohistochemical staining. The viral antigen was detected in salivary glands, haemocytes, synganglia, ovaries, testes, fat bodies, and midgut. Since the virus was shown to be able to cross the midgut wall and infect various tick organs, this may indicate potential for biological development and transmission of LSDV in ticks. This study strengthens the previously reported evidence of the occurrence of LSDV in tick saliva.

Abstract

Lumpy skin disease is a debilitating cattle disease caused by the lumpy skin disease virus (LSDV), belonging to the genus Capripoxvirus. Epidemics of the disease usually occur in summer, when insect activity is high. Limited information is available on how LSDV persists during inter-epidemic periods. Transmission of LSDV by mosquitoes such as Aedes aegypti has been shown to be mechanical, there is no carrier state in cattle and the role of wildlife in the epidemiology of the disease seems to be of minor importance. Recent studies in ticks have shown transstadial persistence of LSDV in Rhipicephalus appendiculatus and Amblyomma hebraeum as well as transovarial persistence of the virus in Rhipicephalus decoloratus, R. appendiculatus and A. hebraeum. The over-wintering of ticks off the host as part of their life cycles is well known: A. hebraeum and R. appendiculatus over-winter, for example, on the ground as engorged nymphs/unfed (emergent) adults while R. decoloratus over-winters on the ground as engorged females. In this study, transstadial and transovarial persistence of LSDV from experimentally infected A. hebraeum nymphs and R. decoloratus females after exposure to cold temperatures of 5 °C at night and 20 °C during the day for 2 months was reported. This observation suggests possible over-wintering of the virus in these tick species.

Abstract

Lumpy skin disease (LSD), an acute, sub-acute or inapparent disease of cattle, is caused by lumpy skin disease virus (LSDV), a member of the genus Capripoxvirus in the family Poxviridae. LSD is characterised by high fever, formation of circumscribed skin lesions and ulcerative lesions on the mucous membranes of the mouth, respiratory and digestive tracts. It is an economically important disease due to the permanent damage to hides, the reduction in productivity and trade restrictions imposed on affected areas. Transmission has been associated with blood-feeding insects such as stable flies (Stomoxysis calcitrans) and mosquitoes (Aedes aegypti). Mechanical (intrastadial) and transstadial transmission by Amblyomma hebraeum and Rhipicephalus appendiculatus as well as transovarial transmission by R. decoloratus have been reported. In this study transovarial passage of LSDV to larvae and subsequent transmission to recipient animals were demonstrated. The finding of transovarial passage of LSDV in female ticks shows the potential for A. hebraeum, R. appendiculatus and R. decoloratus to be reservoir hosts for LSDV.
Ludi A B, Horton D L, Li Y, Mahapatra M, King D P, Knowles N J, Russell C A, Paton D J, Wood J L N, Smith D J, Hammond J M (2014)

Antigenic variation of foot-and-mouth disease virus serotype A

Journal of General Virology 95 (2), 384-392

Abstract

The current measures to control foot-and-mouth disease (FMD) include vaccination, movement control and slaughter of infected or susceptible animals. One of the difficulties in controlling FMD by vaccination arises due to the substantial diversity found among the seven serotypes of FMD virus (FMDV) and the strains within these serotypes. Therefore, vaccination using a single vaccine strain may not fully cross-protect against all strains within that serotype, and therefore selection of appropriate vaccines requires serological comparison of the field virus and potential vaccine viruses using relationship coefficients (r1 values). Limitations of this approach are that antigenic relationships among field viruses are not addressed, as comparisons are only with potential vaccine virus. Furthermore, inherent variation among vaccine sera may impair reproducibility of one-way relationship scores. Here, we used antigenic cartography to quantify and visualize the antigenic relationships among FMD serotype A viruses, aiming to improve the understanding of FMDV antigenic evolution and the scope and reliability of vaccine matching. Our results suggest that predicting antigenic difference using genetic sequence alone or by geographical location is not currently reliable. We found co-circulating lineages in one region that were genetically similar but antigenically distinct. Nevertheless, by comparing antigenic distances measured from the antigenic maps with the full capsid (P1) sequence, we identified a specific amino acid substitution associated with an antigenic mismatch among field viruses and a commonly used prototype vaccine strain, A22/IRQ/24/64.

Abstract

Left displacement of the abomasum (LDA) is an important periparturient disorder of dairy cows. This study evaluated differences in metabolic parameters between case-control pairs of cows (n=67) from 24 farms, and related these to outcomes in fertility and production. Cows with an assisted delivery were x3 more likely to develop LDA, and affected cows tended to have had a longer dry period. At recruitment, cows with LDA tended to be in lower body condition accompanied by significantly higher circulating concentrations of beta-hydroxybutyrate (BHB), non-esterified fatty acid (NEFA) and glucose and lower IGF1. Overall culling rate for all cows in the subsequent lactation was 22.5 per cent. Cows with LDA were not at increased odds of being culled but they produced, on average, 2272 l less milk and tended to have longer intervals to conception. Considering all cows irrespective of LDA status, the mean IGF1 level at recruitment was the only measured parameter associated with subsequent risk of culling (culled 11.7 ng/ml, not culled 23.5 ng/ml; P=0.005). Our findings support previous work indicating that poor insulin sensitivity through an uncoupling of the somatotrophic axis may be an important factor associated with LDA. Improved nutritional management of dry cows should reduce the incidence of both LDA and culling.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.