Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2603 results for your search.
Sanderson N D, Norman P J, Guethlein L A, Ellis S A, Williams C, Breen M, Park S D E, Magee D A, Babrzadeh F, Warry A, Watson M, Bradley D G, MacHugh D E, Parham P, Hammond J A (2014)

Definition of the cattle killer cell Ig–like receptor gene family: comparison with aurochs and human counterparts

Journal of Immunology 193 (12), 6016-6030

Abstract

Under selection pressure from pathogens, variable NK cell receptors that recognize polymorphic MHC class I evolved convergently in different species of placental mammal. Unexpectedly, diversified killer cell Ig–like receptors (KIRs) are shared by simian primates, including humans, and cattle, but not by other species. Whereas much is known of human KIR genetics and genomics, knowledge of cattle KIR is limited to nine cDNA sequences. To facilitate comparison of the cattle and human KIR gene families, we determined the genomic location, structure, and sequence of two cattle KIR haplotypes and defined KIR sequences of aurochs, the extinct wild ancestor of domestic cattle. Larger than its human counterpart, the cattle KIR locus evolved through successive duplications of a block containing ancestral KIR3DL and KIR3DX genes that existed before placental mammals. Comparison of two cattle KIR haplotypes and aurochs KIR show the KIR are polymorphic and the gene organization and content appear conserved. Of 18 genes, 8 are functional and 10 were inactivated by point mutation. Selective inactivation of KIR3DL and activating receptor genes leaves a functional cohort of one inhibitory KIR3DL, one activating KIR3DX, and six inhibitory KIR3DX. Functional KIR diversity evolved from KIR3DX in cattle and from KIR3DL in simian primates. Although independently evolved, cattle and human KIR gene families share important function-related properties, indicating that cattle KIR are NK cell receptors for cattle MHC class I. Combinations of KIR and MHC class I are the major genetic factors associated with human disease and merit investigation in cattle.
Schnettler E, Tykalova H, Watson M, Sharma M, Sterken M G, Obbard D J, Lewis S H, McFarlane M, Bell-Sakyi L, Barry G, Weisheit S, Best S M, Kuhn R J, Pijlman G P, Chase-Topping M E, Gould E A, Grubhoffer L, Fazakerley J K, Kohl A (2014)

Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses

Nucleic Acids Research 42 (14), 9436-9446

Abstract

Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta) and ticks (class Arachnida). RNA interference (RNAi) is the major antiviral mechanism in arthropods against arboviruses. Unlike in mosquitoes, tick antiviral RNAi is not understood, although this information is important to compare arbovirus/host interactions in different classes of arbovirus vectos. Using an Ixodes scapularis-derived cell line, key Argonaute proteins involved in RNAi and the response against tick-borne Langat virus (Flaviviridae) replication were identified and phylogenetic relationships characterized. Analysis of small RNAs in infected cells showed the production of virus-derived small interfering RNAs (viRNAs), which are key molecules of the antiviral RNAi response. Importantly, viRNAs were longer (22 nucleotides) than those from other arbovirus vectors and mapped at highest frequency to the termini of the viral genome, as opposed to mosquito-borne flaviviruses. Moreover, tick-borne flaviviruses expressed subgenomic flavivirus RNAs that interfere with tick RNAi. Our results characterize the antiviral RNAi response in tick cells including phylogenetic analysis of genes encoding antiviral proteins, and viral interference with this pathway. This shows important differences in antiviral RNAi between the two major classes of arbovirus vectors, and our data broadens our understanding of arthropod antiviral RNAi.

Abstract

Swine, unlike other artiodactyls, but similar to humans, utilize both lambda and kappa light chain isotypes almost equally in the generation of their antibody repertoire. The porcine antibody light chain loci have previously been characterized in a single Duroc sow in which was seen extensive allelic variation between light chain genes on homologous chromosomes. However, the extent of variation between individuals is completely unknown. Using deep sequencing of cDNA-derived amplicons from five pigs, we report the identification and characterization of an IGLV gene that is functional and highly expressed in some animals, yet completely absent in others. Our findings provide a possible rationale for the known individual-to-individual variation in antibody responses to vaccination, infectious challenge, and subsequent disease outcome.
Searle K R, Barber J, Stubbins F, Labuschagne K, Carpenter S, Butler A, Denison E, Sanders C, Mellor P S, Wilson A, Nelson N, Gubbins S, Purse B V (2014)

Environmental drivers of Culicoides phenology: How important is species-specific variation when determining disease policy?

PLoS ONE 9 (11), e111876

Abstract

Since 2006, arboviruses transmitted by Culicoides biting midges (Diptera: Ceratopogonidae) have caused significant disruption to ruminant production in northern Europe. The most serious incursions involved strains of bluetongue virus (BTV), which cause bluetongue (BT) disease. To control spread of BTV, movement of susceptible livestock is restricted with economic and animal welfare impacts. The timing of BTV transmission in temperate regions is partly determined by the seasonal presence of adult Culicoides females. Legislative measures therefore allow for the relaxation of ruminant movement restrictions during winter, when nightly light-suction trap catches of Culicoides fall below a threshold (the ‘seasonally vector free period’: SVFP). We analysed five years of time-series surveillance data from light-suction trapping in the UK to investigate whether significant inter-specific and yearly variation in adult phenology exists, and whether the SVFP is predictable from environmental factors. Because female vector Culicoides are not easily morphologically separated, inter-specific comparisons in phenology were drawn from male populations. We demonstrate significant inter-specific differences in Culicoides adult phenology with the season of Culicoides scoticus approximately eight weeks shorter than Culicoides obsoletus. Species-specific differences in the length of the SVFP were related to host density and local variation in landscape habitat. When the Avaritia Culicoides females were modelled as a group (as utilised in the SFVP), we were unable to detect links between environmental drivers and phenological metrics. We conclude that the current treatment of Avaritia Culicoides as a single group inhibits understanding of environmentally-driven spatial variation in species phenology and hinders the development of models for predicting the SVFP from environmental factors. Culicoides surveillance methods should be adapted to focus on concentrated assessments of species-specific abundance during the start and end of seasonal activity in temperate regions to facilitate refinement of ruminant movement restrictions thereby reducing the impact of Culicoides-borne arboviruses.

Abstract

Sand flies remain the only proven vectors of Leishmania spp. but recent implementation of PCR techniques has led to increasing speculation about "alternative vectors", including biting midges. Here, we summarize that PCR has considerable limits for studing the role of bloodsucking arthropods in the epidemiology of leishmaniasis. The Leishmania life cycle in the sand fly includes a complex series of interactions which are in many cases species-specific, the early phase of the infection is, however, non-specific to sand flies. These facts should be considered in detection of Leishmania in ,"alternative" or "new" vectors to avoid mistaken speculation about their vector competence.
Sen A, Saravanan P, Balamurugan V, Bhanuprakash V, Venkatesan G, Sarkar J, Rajak K K, Ahuja A, Yadav V, Sudhakar S B, Parida S, Singh R K (2014)

Detection of subclinical peste des petits ruminants virus infection in experimental cattle

VirusDisease 25 (3), 408-411

Abstract

The present study was undertaken to investigate the possible involvement of cattle in the epidemiology of peste des petits ruminants (PPR) as subclinical carriers. Cattle were exposed experimentally to PPR virus (PPRV) infection or placed in contact with PPR infected goats. Clinical samples including heparinized/EDTA blood, plasma, peripheral blood monocyte cells (PBMCs) and clotted blood (for serum) were collected periodically from 21 days post infection (dpi) to 397 dpi (21, 45, 50, 57, 65, 95, 111, 119, 148, 190, 203 and 397 dpi) and tested for PPRV antigen, nucleic acid and antibody. Exposed cattle seroconverted and maintained PPRV specific haemagglutinin antibodies and detectable PPRV antigen/nucleic acid in blood, plasma and PBMCs from 21 to 397 dpi. PPRV was recovered from blood and PBMC collected from experimental animals at 21 dpi, initially in B95a cells and then adapted to Vero cells. The study indicated that PPRV can infect cattle subclinically and PPRV antigen/nucleic acid persist in cattle for at least 397 days.
Senthil Kumar K, Babu A, Sundarapandian G, Roy P, Thangavelu A, Siva Kumar K, Arumugam R, Chandran N D, Muniraju M, Mahapatra M, Banyard A C, Manohar B M, Parida S (2014)

Molecular characterisation of lineage IV peste des petits ruminants virus using multi gene sequence data

Veterinary Microbiology 174 (1-2), 39-49

Abstract

Peste des petits ruminants is responsible for an economically important plague of small ruminants that is endemic across much of the developing world. Here we describe the detection and characterisation of a PPR virus from a recent outbreak in Tamil Nadu, India. We demonstrate the isolation of PPR virus from rectal swab and highlight the potential spread of disease to in-contact animals through faecal materials and use of faecal material as non-invasive method of sampling for susceptible wild ruminants. Finally we have performed a comprehensive 'multi-gene' assessment of lineage IV isolates of PPRV utilising sequence data from our study and publically available partial N, partial F and partial H gene data. We describe the effects of grouping PPRV isolates utilising different gene loci and conclude that the variable part of N gene at C terminus gives the best phylogenetic assessment of PPRV isolates with isolates generally clustering according to geographical isolation. This assessment highlights the importance of careful gene targeting with RT-PCR to enable thorough phylogenetic analysis.

Abstract

Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens.

Abstract

The presence of sialylated structures in tick organs was observed previously using lectin staining. Recently, we demonstrated the presence of sialylated N-glycans using mass spectrometry in tick salivary glands and the gut. However, we proposed a host (blood) origin for these glycans and mapped the transport of sialylated molecules from the gut to the salivary glands. In this report, we performed quantitation of whole sialic acid and of metabolically incorporated sialic acid (N-azido neuraminic acid) in Ixodes ricinus tick samples. We show that the majority of sialylated molecules in the adult tick originate in the host (blood) and are not synthesized by the tick. Similar results were observed for tick cell cultures. The almost complete absence of tick sialylated molecules and the specific transport and localization of host structures into the tick salivary glands and the saliva raises many questions on the role of these molecules in the physiology and, specifically, the blood-feeding of ticks.

Abstract

Poly(A) binding protein 1 (PABP1) plays a central role in mRNA translation and stability and is a target by many viruses in diverse manners. We report a novel viral translational control strategy involving the recruitment of PABP1 to the 5' leader internal ribosome entry site (5L IRES) of an immediate-early (IE) bicistronic mRNA that encodes the neurovirulence protein (pp14) from the avian herpesvirus Marek’s disease virus serotype 1 (MDV1). We provide evidence for the interaction between an internal poly(A) sequence within the 5L IRES and PABP1 which may occur concomitantly with the recruitment of PABP1 to the poly(A) tail. RNA interference and reverse genetic mutagenesis results show that a subset of virally encoded-microRNAs (miRNAs) targets the inhibitor of PABP1, known as paip2, and therefore plays an indirect role in PABP1 recruitment strategy by increasing the available pool of active PABP1. We propose a model that may offer a mechanistic explanation for the cap-independent enhancement of the activity of the 5L IRES by recruitment of a bona fide initiation protein to the 5' end of the message and that is, from the affinity binding data, still compatible with the formation of ‘closed loop’ structure of mRNA.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.