A DNA aptamer efficiently inhibits the infectivity of bovine herpesvirus 1 by blocking viral entry

Bovine herpesvirus 1 (BoHV-1) is an important pathogen of domestic and wild cattle responsible for major economic losses in dairy and beef industries throughout the world. Inhibition of viral entry plays a crucial role in the control of BoHV-1 infection and aptamers have been reported to inhibit viral replication. In this study, nine DNA aptamers that target BoHV-1 were generated using systemic evolution of ligands by exponential enrichment. Of the nine candidates, aptamer IBRV-A4 exhibited the highest affinity and specificity for BoHV-1, which bound to BoHV-1 with a Kd value of 3.519?nM and demonstrated the greatest virus binding as shown by fluorescence imaging. The neutralizing ability of aptamer IBRV-A4 was determined using neutralization assays and real time PCR in BoHV-1 infected Madin-darby bovine kidney cells. Virus titration, immunofluorescence and confocal laser scanning microscopy showed virus replication significantly decreased when aptamer IBRV-A4 was added to BoHV-1 infected MDBK cells at 0 and 0.5?hours post-infection, whereas no change was seen when IBRV-A4 was added 2?hours post-infection. This concludes that aptamer IBRV-A4 efficiently inhibits viral entry of BoHV-1 in MDBK cells and is therefore a novel tool for diagnosis and treatment of BoHV-1 infection in cattle.

Trim content

® The Pirbright Institute 2017 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.