Publications

Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2604 results for your search.

Abstract

Background: The bacterial surface protein internalin (InlA) is a major virulence factor of the food-born pathogen Listeria monocytogenes. It plays a critical role in the bacteria crossing the host intestinal barrier by a species-specific interaction with the cell adhesion molecule E-cadherin. In mice, the interaction of InlA with murine E-cadherin is impaired due to sequence-specific binding incompatibilities. We have previously used the approach of 'murinisation' to establish an oral listeriosis infection model in mice by exchanging two amino acid residues in InlA. This dramatically increases binding to mouse E-cadherin. In the present study, we have used bioluminescent murinised and non-murinised Listeria strains to examine the spatiotemporal dissemination of Listeria in four diverse mouse genetic backgrounds after oral inoculation. Results: The murinised Listeria monocytogenes strain showed enhanced invasiveness and induced more severe infections in all four investigated mouse inbred strains compared to the non-murinised Listeria strain. We identified C57BL/6J mice as being most resistant to orally acquired listeriosis whereas C3HeB/FeJ, A/J and BALB/cJ mice were found to be most susceptible to infection. This was reflected in faster kinetics of Listeria dissemination, higher bacterial loads in internal organs, and elevated serum levels of IL-6, IFN-gamma, TNF-alpha and CCL2 in the susceptible strains as compared to the resistant C57BL/6J strain. Importantly, murinisation of InlA did not cause enhanced invasion of Listeria monocytogenes into the brain. Conclusion: Murinised Listeria are able to efficiently cross the intestinal barrier in mice from diverse genetic backgrounds. However, expression of murinized InlA does not enhance listerial brain invasion suggesting that crossing of the blood brain barrier and crossing of the intestinal epithelium are achieved by Listeria monocytogenes through different molecular mechanisms.

Formisano P, Aldridge B, Alony Y, Beekhuis L, Davies E, Del Pozo J, Dunn K, English K, Morrison L, Sargison N, Seguino A, Summers B A, Wilson D, Milne E, Beard P M (2013)

Identification of Sarcocystis capracanis in cerebrospinal fluid from sheep with neurological disease

Veterinary Parasitology 193 (1-3), 252-255

Abstract

Protozoal merozoites were identified in the cerebrospinal fluid of two sheep with neurological disease in the UK. Polymerase chain reaction (PCR) identified the merozoites as Sarcocystis capracanis, a common protozoal pathogen of goats. This is the first report of this species infecting sheep and may represent an aberrant infection with sheep acting as dead end hosts, or alternatively could indicate that sheep are able to act as intermediate hosts for S. capracanis, widening the previously reported host range of this pathogen. It is possible that S. capracanis is a previously unrecognised cause of ovine protozoal meningoencephalitis (OPM) in the UK.

Abstract

MicroRNAs (miRNAs) are small, abundant, non-coding RNAs that modulate gene expression by interfering with translation or stability of mRNA transcripts in a sequence-specific manner. A total of 734 precursor and 996 mature miRNAs have so far been identified in the chicken genome. A number of these miRNAs are expressed in a cell type-specific manner, and understanding their function requires detailed examination of their expression in different cell types. We carried out deep sequencing of small RNA populations isolated from stimulated or transformed avian haemopoietic cell lines to determine the changes in the expression profiles of these important regulatory molecules during these biological events. There were significant changes in the expression of a number of miRNAs, including miR-155, in chicken B cells stimulated with CD40 ligand. Similarly, avian leukosis virus (ALV)-transformed DT40 cells also showed changes in miRNA expression in relation to the naive cells. Embryonic stem cell line BP25 demonstrated a distinct cluster of upregulated miRNAs, many of which were shown previously to be involved in embryonic stem cell development. Finally, chicken macrophage cell line HD11 showed changes in miRNA profiles, some of which are thought to be related to the transformation by v-myc transduced by the virus. This work represents the first publication of a catalog of microRNA expression in a range of important avian cells and provides insights into the potential roles of miRNAs in the hematopoietic lineages of cells in a model non-mammalian species.
Zohari S, Munir M (2013)

Avian paramyxoviruses serotype 1 to 10

Mononegaviruses of veterinary importance. Volume I: Pathobiology and molecular diagnosis (edited by M Munir, CABI), 15-37

Abstract

This chapter discusses the up-to-date literature on historical distribution, virus and disease, classification, viral replication, pathogenesis, clinical signs, gross lesions, disease transmission, other avian paramyxovirus serotypes and laboratory diagnosis of Avian paramyxoviruses in livestock, horses and pets.
Paton D J, King D P (2013)

Diagnosis of foot-and-mouth disease

Developments in Biologicals 135, 117-123

Abstract

Foot-and-mouth disease virus (FMDV) exists as multiple serotypes and strains that infect a range of cloven-hoofed animals with variable severity. Clinical diagnosis reinforced by diagnostic tests support timely intervention, whilst virus characterisation helps trace routes of spread and select appropriate vaccine strains. To speed up and simplify diagnosis, penside tests have recently been developed. Serology is used to identify undisclosed infection and substantiate freedom from infection and specific tests are needed to detect infected animals in vaccinated populations. Serology is also used to estimate post-vaccinal population immunity. Contingency plans are required to enable countries to scale up diagnosis at short notice. Improvements are needed in preclinical and penside diagnosis and in our ability to model vaccine effectiveness.

Abstract

Fever, which is closely linked to viraemia, is considered to be both the main and the earliest clinical sign in sheep infected with bluetongue virus (BTV). The aim of this study was to evaluate the potential use of infrared thermography (IRT) for early detection of fever in sheep experimentally infected with bluetongue virus serotype 1 (BTV-1) and serotype 8 (BTV-8). This would reduce animal stress during experimental assays and assist in the development of a screening method for the identification of fever in animals suspected of being infected with BTV. Rectal and infrared eye temperatures were collected before and after BTV inoculation. The two temperature measures were positively correlated (r = 0.504, P

Abstract

Toll-like Receptors (TLR) are phylogenetically conserved transmembrane proteins responsible for detection of pathogens and activation of immune responses in diverse animal species. The stimulation of TLR by pathogen-derived molecules leads to the production of pro-inflammatory mediators including cytokines and nitric oxide. Although TLR-induced events are critical for immune induction, uncontrolled inflammation can be life threatening and regulation is a critical feature of TLR biology. We used an avian macrophage cell line (HD11) to determine the relationship between TLR agonist-induced activation of inflammatory responses and the transcriptional regulation of TLR. Exposure of macrophages to specific TLR agonists induced upregulation of cytokine and nitric oxide pathways that were inhibited by blocking various components of the TLR signalling pathways. TLR activation also led to changes in the levels of mRNA encoding the TLR responsible for recognising the inducing agonist (cognate regulation) and cross-regulation of other TLR (non-cognate regulation). Interestingly, in most cases, regulation of TLR mRNA was independent of NF?B activity but dependent on one or more of the MAPK pathway components. Moreover, the relative importance of ERK, JNK and p38 was dependent upon both the stimulating agonist and the target TLR. These results provide a framework for understanding the complex pathways involved in transcriptional regulation of TLR, immune induction and inflammation. Manipulation of these pathways during vaccination or management of acute inflammatory disease may lead to improved clinical outcome or enhanced vaccine efficacy.

Abstract

Peste-des-petits ruminants virus (PPRV) is a viral pathogen that causes a devastating plague of small ruminants. PPRV is an economically significant disease that continues to be a major obstacle to the development of sustainable agriculture across the developing world. The current understanding of PPRV pathogenesis has been heavily assumed from the closely related rinderpest virus (RPV) and other morbillivirus infections alongside data derived from field outbreaks. There have been few studies reported that have focused on the pathogenesis of PPRV and very little is known about the processes underlying the early stages of infection. In the present study, 15 goats were challenged by the intranasal route with a virulent PPRV isolate, Côte d’Ivoire ’89 (CI/89) and sacrificed at strategically defined time-points post infection to enable pre- and post-mortem sampling. This approach enabled precise monitoring of the progress and distribution of virus throughout the infection from the time of challenge, through peak viraemia and into a period of convalescence. Observations were then related to findings of previous field studies and experimental models of PPRV to develop a clinical scoring system for PPRV. Importantly, histopathological investigations demonstrated that the initial site for virus replication is not within the epithelial cells of the respiratory mucosa, as has been previously reported, but is within the tonsillar tissue and lymph nodes draining the site of inoculation. We propose that virus is taken up by immune cells within the respiratory mucosa which then transport virus to lymphoid tissues where primary virus replication occurs, and from where virus enters circulation. Based on these findings we propose a novel clinical scoring methodology for PPRV pathogenesis and suggest a fundamental shift away from the conventional model of PPRV pathogenesis.

Abstract

Picornaviruses are small RNA viruses, responsible for important human and animal diseases for example polio, some forms of the common cold and foot-and-mouth disease. Safe and effective picornavirus vaccines could in principle be produced from recombinant virus-like particles, which lack the viral genome and so cannot propagate. However the synthesis of stable forms of such particles at scale has proved very difficult. Two key problems have been that a protease required for the proper processing of the polyprotein precursor is toxic for host cells and the empty recombinant particles tend to be physically unstable in comparison to virus particles containing nucleic acid. This is particularly true in the case of Foot-and-Mouth Disease Virus (FMDV). Here we report the production and evaluation of a novel vaccine against FMDV that addresses both of these shortcomings. Importantly, the strategies we have devised to produce improved FMDV vaccines can be directly applied to viruses pathogenic for humans

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.