Publications

Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2609 results for your search.

Abstract

Reconstructing the evolutionary history, demographic signal and dispersal processes from viral genome sequences contributes to our understanding of the epidemiological dynamics underlying epizootic events. In this study, a Bayesian phylogenetic framework was used to explore the phylodynamics and spatio-temporal dispersion of the O CATHAY topotype of foot-and-mouth disease virus (FMDV) that caused epidemics in the Philippines between 1994 and 2005. Sequences of the FMDV genome encoding the VP1 showed that the O CATHAY FMD epizootic in the Philippines resulted from a single introduction and was characterised by three main transmission hubs in Rizal, Bulacan and Manila Provinces. From a wider regional perspective, phylogenetic reconstruction of all available O CATHAY VP1 nucleotide sequences identified three distinct sub-lineages associated with country-based clusters originating in Hong Kong Special Administrative Region (SAR), the Philippines and Taiwan. The root of this phylogenetic tree was located in Hong Kong SAR, representing the most likely source for the introduction of this lineage into the Philippines and Taiwan. The reconstructed O CATHAY phylodynamics revealed three chronologically distinct evolutionary phases, culminating in a reduction in viral diversity over the final 10 years. The analysis suggests that viruses from the O CATHAY topotype have been continually maintained within swine industries close to Hong Kong SAR, following the extinction of virus lineages from the Philippines and the reduced number of FMD cases in Taiwan.

Abstract

The increasing global importance of Rift Valley fever (RVF) is clearly demonstrated by its geographical expansion. The presence of a wide range of host and vector species, and the epidemiological characteristics of RVF, have led to concerns that epidemics will continue to occur in previously unaffected regions of Africa. The proximity of the Sahrawi territories of Western Sahara to endemic countries, such as Mauritania, Senegal, and Mali with periodic isolation of virus and serological evidence of RVF, and the intensive livestock trade in the region results in a serious risk of RVF spread in the Sahrawi territories, and potentially from there to the Maghreb and beyond. A sero-epidemiological survey was conducted in the Saharawi territories between March and April 2008 to investigate the possible presence of the RVF virus (RVFV) and associated risk factors. A two-stage cluster sampling design was used, incorporating 23 sampling sites. A total of 982 serum samples was collected from 461 sheep, 463 goats and 58 camels. Eleven samples (0.97%) tested positive for IgG against the RVFV. There were clusters of high seroprevalence located mostly in the Tifariti (7.69%) and Mehaires (7.14%) regions, with the Tifariti event having been found in one single flock (4/26 positive animals). Goats and older animals were at a significantly increased risk being seropositive (p?=?0.007 and p?=?0.007, respectively). The results suggest potential RVF activity in the study area, where intense livestock movement and trade with neighbouring countries might be considered as a primary determinant in the spread of the disease. The importance of a continuous field investigation is reinforced, in light of the risk of RVF expansion to historically unaffected regions of Africa.

Abstract

A cohort based study has been undertaken to investigate the possible association of genetic polymorphisms in genes functionally related to follicular T helper (TfH) cells with non-responsiveness to hepatitis B virus (HBV) vaccination. A total of 24 single nucleotide polymorphisms (SNPs) in 6 TfH related genes(CXCR5, ICOS, CXCL13, IL-21, BCL6 and CD40L) were investigated in 20 non-responders and 45 responders to HBV vaccination. Genetic association analysis revealed that three SNPs (rs497916, rs3922, rs676925)in CXCR5 and one SNP (rs355687) in CXCL13 were associated with hepatitis B vaccine efficacy. In addition, significantly unbalanced distributions of two haplotypes, defined by three SNPs (rs497916, rs3922,rs676925) within CXCR5, were also seen between non-responders and responders. Furthermore, we demonstrated that the rs3922 “GG” genotype was associated with higher levels of CXCR5 than the “AG” and “AA” genotype in a group of healthy volunteers. A dual luciferase report assay was used to confirm that the “G” allele in rs3922 may lead to higher gene expression than the “A” allele, implicating that rs3922might be a functional SNP affecting CXCR5 expression. These results indicated that polymorphism asso-ciated changes in CXCR5 expression in TfH cells may be associated with non-responsiveness to hepatitis B vaccination.

Abstract

Current concerns about food security highlight the importance of maintaining productive and disease-resistant livestock populations. Major histocompatibility complex (MHC) class I genes have a central role in immunity. A high level of diversity in these genes allows populations to survive despite exposure to rapidly evolving pathogens. This review aims to describe the key features of MHC class I genetic diversity in cattle and to discuss their role in disease resistance. Discussion centers on data derived from the cattle genome sequence and studies addressing MHCclass I gene expression and function. The impact of intensive selection on MHC diversity is also considered.Ahigh level of complexity in MHC class I genes and functionally related gene families is revealed. This highlights the need for increased efforts to determine key genetic components that govern cattle immune responses to disease, which is increasingly important in the face of changing human and environmental demands.

Abstract

Newcastle disease (ND) is a highly contagious disease of many avian species and is particularly responsible for devastating disease outbreaks in commercial poultry flocks in Pakistan that incur huge economic losses to the national poultry industry annually. Despite implementation of an extensive vaccination program for poultry birds, the disease appears in an endemic form in commercial broiler and layer poultry farms. This study was conducted to identify the prevalent velogenic NDV strain responsible for disease outbreaks in commercial poultry farms in Punjab, Pakistan. The NDV strains isolated from pathological specimens through inoculation in embryonated chicken eggs were characterized biologically through the intracerebral pathogenicity index (ICPI), and genetically on the basis of the fusion (F) protein cleavage site. Among these, six NDV isolates showed an F protein cleavage site motif (112RRQKRF117) and an ICPI value ranging between 1.5 and 1.88, both are characteristics for velogenic strains of NDV. In addition, phylogenetic analysis based on a partial sequence of the F protein gene clustered these isolates within class II, genotype VII and specifically within genotype VII-e. This is the first report that demonstrated the presence of such NDV strains in commercial poultry farms in northern Punjab of Pakistan.

Abstract

Natural killer (NK) cells are important players in the innate immune response against influenza A virus and the activating receptor NKp46, which binds hemagglutinin on the surface of infected cells, has been assigned a role in this context. As pigs are natural hosts for influenza A viruses and pigs possess both NKp46 2 and NKp46(+) NK cells, they represent a good animal model for studying the role of the NKp46 receptor during influenza. We explored the role of NK cells in piglets experimentally infected with 2009 pandemic H1N1 influenza virus by flow cytometric analyses of cells isolated from blood and lung tissue and by immunostaining of lung tissue sections. The number of NKp46(+) NK cells was reduced while NKp46 2 NK cells remained unaltered in the blood 1-3 days after infection. In the lungs, the intensity of NKp46 expression on NK cells was increased during the first 3 days, and areas where influenza virus nucleoprotein was detected were associated with increased numbers of NKp46(+) NK cells when compared to uninfected areas. NKp46(+) NK cells in the lung were neither found to be infected with influenza virus nor to be undergoing apoptosis. The binding of porcine NKp46 to influenza virus infected cells was verified in an in vitro assay. These data support the involvement of porcine NKp46(+) NK cells in the local immune response against influenza virus.

Abstract

Previous work in cattle illustrated the protective efficacy and negative marker potential of a A serotype foot-and-mouth disease virus (FMDV) vaccine prepared from a virus lacking a significant portion of the VP1 G-H loop (termed A(?)). Since this deletion also includes the arginine-glycine-aspartate (RGD) motif required for virus attachment to the host cell in vivo, it was hypothesised that this virus would be attentuated in naturally susceptible animals. The A(?) virus was passaged three times in cattle via needle inoculation of virus suspension delivered into the intradermal space of the tongue (intradermolingual: IDL). Included in the study were three direct contact cattle, two of which were used for the third cattle passage (by inoculation) after direct contact exposure for three days. Cattle were monitored for clinical signs and samples were collected for sequencing as well as antibody and viral genome detection by ELISA and qRT-PCR. Following needle inoculation with the A(?) virus, naïve cattle developed typical clinical signs of FMDV infection, diagnostic assays also provided positive serological and virological results. However, the contact cattle did not develop clinical signs or generate serological or virological markers indicative of FMDV infection even when the cattle were subsequently needle inoculated with 105 TCID50 A(?) FMDV delivered IDL following three days of direct contact exposure. The results suggest that the A(?) virus is not attentuated in cattle when inoculated IDL. This virus could be useful as a tool to understand further the natural pathogenesis, receptor usage and internalisation pathways of FMDV.
Fowler V L, Bankowski B M, Armson B, Di Nardo A, Valdazo-Gonzalez B, Reid S M, Barnett P V, Wadsworth J, Ferris N P, Mioulet V, King D P (2014)

Recovery of viral RNA and infectious foot-and-mouth disease virus from positive lateral-flow devices

PLoS ONE 9 (10), e109322

Abstract

Foot-and-mouth disease Virus (FMDV) is an economically important, highly contagious picornavirus that affects both wild and domesticated cloven hooved animals. In developing countries, the effective laboratory diagnosis of foot-and-mouth disease (FMD) is often hindered by inadequate sample preservation due to difficulties in the transportation and storage of clinical material. These factors can compromise the ability to detect and characterise FMD virus in countries where the disease is endemic. Furthermore, the high cost of sending infectious virus material and the biosecurity risk it presents emphasises the need for a thermo-stable, non-infectious mode of transporting diagnostic samples. This paper investigates the potential of using FMDV lateral-flow devices (LFDs) for dry transportation of clinical samples for subsequent nucleic acid amplification, sequencing and recovery of infectious virus by electroporation. FMDV positive samples (epithelial suspensions and cell culture isolates) representing four FMDV serotypes were applied to antigen LFDs: after which it was possible to recover viral RNA that could be detected using real-time RT-PCR. Using this nucleic acid, it was also possible to recover VP1 sequences and also successfully utilise protocols for amplification of complete FMD virus genomes. It was not possible to recover infectious FMDV directly from the LFDs, however following electroporation into BHK-21 cells and subsequent cell passage, infectious virus could be recovered. Therefore, these results support the use of the antigen LFD for the dry, nonhazardous transportation of samples from FMD endemic countries to international reference laboratories.

Abstract

Vaccination with live attenuated classical swine fever virus (CSFV) vaccines can rapidly confer protection in the absence of neutralizing antibodies. With an aim of providing information on the cellular mechanisms that may mediate this protection, we explored the interaction of porcine natural killer (NK) cells and gammadelta T cells with CSFV. Both NK and gammadelta T cells were refractory to infection with attenuated or virulent CSFV, and no stimulatory effects, as assessed by the expression of major histocompatibility complex (MHC) class II (MHC-II), perforin, and gamma interferon (IFN-gamma), were observed when the cells were cultured in the presence of CSFV. Coculture with CSFV and myeloid dendritic cells (mDCs) or plasmacytoid dendritic cells (pDCs) showed that pDCs led to a partial activation of both NK and gammadelta T cells, with upregulation of MHC-II being observed. An analysis of cytokine expression by infected DC subsets suggested that this effect was due to IFN-alpha secreted by infected pDCs. These results were supported by ex vivo analyses of NK and gammadelta T cells in the tonsils and retropharyngeal lymph nodes from pigs that had been vaccinated with live attenuated CSFV and/or virulent CSFV. At 5 days postchallenge, there was evidence of significant upregulation of MHC-II but not perforin on NK and gammadelta T cells, which was observed only following a challenge of the unvaccinated pigs and correlated with increased CSFV replication and IFN-alpha expression in both the tonsils and serum. Together, these data suggest that it is unlikely that NK or gammadelta T cells contribute to the cellular effector mechanisms induced by live attenuated CSFV.
Garros C, Balenghien T, Carpenter S, Delecolle J-C, Meiswinkel R, Pedarrieu A, Rakotoarivony I, Gardes L, Golding N, Barber J, Miranda M, Borras D, Goffredo M, Monaco F, Pages N, Sghaier S, Hammami S, Calvo J, Lucientes J, Geysen D, De Deken G, Sarto i Monteys V, Schwenkenbecher J, Kampen H, Hoffmann B, Lehmann K, Werner D, Baldet T, Lancelot R, Cetre-Sossah C (2014)

Towards the PCR-based identification of Palaearctic Culicoides biting midges (Diptera: Ceratopogonidae): results from an international ring trial targeting four species of the subgenus Avaritia

Parasites and Vectors 7 (1), e223

Abstract

BACKGROUND:Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are biological vectors of internationally important arboviruses. To understand the role of Culicoides in the transmission of these viruses, it is essential to correctly identify the species involved. Within the western Palaearctic region, the main suspected vector species, C. obsoletus, C. scoticus, C. dewulfi and C. chiopterus, have similar wing patterns, which makes it difficult to separate and identify them correctly.METHODS:In this study, designed as an inter-laboratory ring trial with twelve partners from Europe and North Africa, we assess four PCR-based assays which are used routinely to differentiate the four species of Culicoides listed above. The assays based on mitochondrial or ribosomal DNA or microarray hybridisation were tested using aliquots of Culicoides DNA (extracted using commercial kits), crude lysates of ground specimens and whole Culicoides (265 individuals), and non-Culicoides Ceratopogonidae (13 individuals) collected from across Europe.RESULTS:A total of 800 molecular assays were implemented. The in-house assays functioned effectively, although specificity and sensitivity varied according to the molecular marker and DNA extraction method used. The Obsoletus group specificity was overall high (95-99%) while the sensitivity varied greatly (59.6-100%). DNA extraction methods impacted the sensitivity of the assays as well as the type of sample used as template for the DNA extraction.CONCLUSIONS:The results are discussed in terms of current use of species diagnostic assays and the future development of molecular tools for the rapid differentiation of cryptic Culicoides species.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.