Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2259 results for your search.
Maan S, Maan N S, Guimera M, Nomikou K, Singh K P, Pullinger G, Belaganahalli M N, Mertens P P C (2012)

Genome sequence of a reassortant strain of bluetongue virus serotype 23 from Western India

Journal of Virology 86 (12), 7011-7012

Abstract

The full genome sequence (19,177 bp) of an Indian strain (IND1988/02) of bluetongue virus (BTV) serotype 23 was determined. This virus was isolated from a sheep that had been killed during a severe bluetongue outbreak that occurred in Rahuri, Maharashtra State, western India, in 1988. Phylogenetic analyses of these data demonstrate that most of the genome segments from IND1988/02 belong to the major "eastern" BTV topotype. However, genome segment 5 belongs to the major "western" BTV topotype, demonstrating that IND1988/02 is a reassortant. This may help to explain the increased virulence that was seen during this outbreak in 1988. Genome segment 5 of IND1988/02 shows >99% sequence identity with some other BTV isolates from India (e.g., BTV-3 IND2003/08), providing further evidence of the existence and circulation of reassortant strains on the subcontinent.

Abstract

A method has been established to sequentially delete combinations of genes from the ASFV genome to test the effect on virus replication and host responses to infection. Initially the ASFV genes MGF505 2R and MGF505 3R and a truncated MGF360 9L gene were deleted from the genome of the tissue-culture adapted ASFV strain BA71V and replaced with bacteriophage loxP sequences flanking the beta-glucuronidase (GUS) marker gene to create recombinant virus V Delta MGF-GUS. Subsequently the GUS gene was removed by site-specific recombination between the two loxP sites involving expression of the bacteriophage Cre recombinase enzyme to create recombinant virus V Delta MGF Delta GUS. The EP402R and EP153R genes were subsequently deleted from the genome of V Delta MGF Delta GUS, using the same GUS marker gene, to construct virus V Delta MGF Delta CD2-Lectin-GUS. These sequential deletions of ASFV genes were shown not to alter virus replication significantly.
Ahmed H A, Salem S A H, Habashi A R, Arafa A A, Aggour M G A, Salem G H, Gaber A S, Selem O, Abdelkader S H, Knowles N J, Madi M, Valdazo-Gonzalez B, Wadsworth J, Hutchings G H, Mioulet V, Hammond J M, King D P (2012)

Emergence of foot-and-mouth disease virus SAT 2 in Egypt during 2012

Transboundary and Emerging Diseases 59 (6), 476-481

Abstract

The epidemiology of foot-and-mouth disease (FMD) in North Africa is complicated by the co-circulation of endemic FMD viruses (FMDV), as well as sporadic incursions of exotic viral strains from the Middle East and Sub-Saharan Africa. This report describes the molecular characterization of SAT 2 FMD viruses that have caused widespread field outbreaks of FMD in Egypt during February and March 2012. Phylogenetic analysis showed that viruses from these outbreaks fell into two distinct lineages within the SAT 2 topotype VII, which were distinct from a contemporary SAT 2 lineage of the same toptype from Libya. These were the first FMD outbreaks due to this serotype in Egypt since 1950 and required the development of a tailored real-time reverse-transcription PCR assay that can be used in the laboratory to distinguish FMD viruses of these lineages from other endemic FMD viruses that might be present in North Africa. These data highlight the ease by which FMDV can cross international boundaries and emphasize the importance of deploying systems to continuously monitor the global epidemiology of this disease.

Abstract

As well as being vectors of many viral, bacterial, and protozoan pathogens of medical and veterinary importance, ticks harbour a variety of microorganisms which are not known to be pathogenic for vertebrate hosts. Continuous cell lines established from ixodid and argasid ticks could be infected with such endosymbiotic bacteria and endogenous viruses, but to date very few cell lines have been examined for their presence. DNA and RNA extracted from over 50 tick cell lines deposited in the Roslin Wellcome Trust Tick Cell Biobank were screened for presence of bacteria and RNA viruses, respectively. Sequencing of PCR products amplified using pan-16S rRNA primers revealed the presence of DNA sequences from bacterial endosymbionts in several cell lines derived from Amblyomma and Dermacentor spp. ticks. Identification to species level was attempted using Rickettsia- and Francisella-specific primers. Pan-Nairovirus primers amplified PCR products of uncertain specificity in cell lines derived from Rhipicephalus, Hyalomma, Ixodes, Carios, and Ornithodoros spp. ticks. Further characterisation attempted with primers specific for Crimean-Congo haemorrhagic fever virus segments confirmed the absence of this arbovirus in the cells. A set of pan-Flavivirus primers did not detect endogenous viruses in any of the cell lines. Transmission electron microscopy revealed the presence of endogenous reovirus-like viruses in many of the cell lines; only 4 of these lines gave positive results with primers specific for the tick Orbivirus St Croix River virus, indicating that there may be additional, as yet undescribed ‘tick-only’ viruses inhabiting tick cell lines.

Abstract

Tick cell lines play an important role in research on ticks and tick-borne pathogenic and symbiotic microorganisms. In an attempt to derive continuous Dermacentor reticulatus cell lines, embryo-derived primary cell cultures were set up from eggs laid by field ticks originally collected as unfed adults in The Netherlands and maintained for up to 16 months. After several months, it became evident that cells in the primary cultures were infected with a Rickettsia-like intracellular organism. Supernatant medium containing some D. reticulatus cells was inoculated into cultures of 2 Rhipicephalus (Boophilus) microplus cell lines, BME/CTVM2 and BME/CTVM23, where abundant growth of the bacteria occurred intracellularly on transfer to both cell lines. Bacterial growth was monitored by light (live, inverted microscope, Giemsa-stained cytocentrifuge smears) and transmission electron microscopy revealing heavy infection with typical intracytoplasmic Rickettsia-like bacteria, not present in uninfected cultures. DNA was extracted from bacteria-infected and uninfected control cultures, and primers specific for Rickettsia 16S rRNA, ompB, and sca4 genes were used to generate PCR products that were subsequently sequenced. D. reticulatus primary cultures and both infected tick cell lines were positive for all 3 Rickettsia genes. Sequencing of PCR products revealed 99-100% identity with published Rickettsia raoultii sequences. The R. raoultii also grew abundantly in the D. nitens cell line ANE58, poorly in the D. albipictus cell line DALBE3, and not at all in the D. andersoni cell line DAE15. In conclusion, primary tick cell cultures and cell lines are useful systems for isolation and propagation of fastidious tick-borne microorganisms. In vitro isolation of R. raoultii from Dutch D. reticulatus confirms previous PCR-based detection in field ticks, and presence of the bacteria in the tick eggs used to initiate the primary cultures confirms that transovarial transmission of this Rickettsia occurs.

Abstract

Background: Eimeria tenella is an apicomplexan parasite that causes coccidiosis in the domestic fowl. Infection with this parasite is diagnosed frequently in intensively reared poultry and its control is usually accorded a high priority, especially in chickens raised for meat. Prophylactic chemotherapy has been the primary method used for the control of coccidiosis. However, drug efficacy can be compromised by drug-resistant parasites and the lack of new drugs highlights demands for alternative control strategies including vaccination. In the long term, sustainable control of coccidiosis will most likely be achieved through integrated drug and vaccination programmes. Characterisation of the E. tenella transcriptome may provide a better understanding of the biology of the parasite and aid in the development of a more effective control for coccidiosis. Results: More than 15,000 partial sequences were generated from the 5' and 3' ends of clones randomly selected from an E. tenella second generation merozoite full-length cDNA library. Clustering of these sequences produced 1,529 unique transcripts (UTs). Based on the transcript assembly and subsequently primer walking, 433 full-length cDNA sequences were successfully generated. These sequences varied in length, ranging from 441 bp to 3,083 bp, with an average size of 1,647 bp. Simple sequence repeat (SSR) analysis identified CAG as the most abundant trinucleotide motif, while codon usage analysis revealed that the ten most infrequently used codons in E. tenella are UAU, UGU, GUA, CAU, AUA, CGA, UUA, CUA, CGU and AGU. Subsequent analysis of the E. tenella complete coding sequences identified 25 putative secretory and 60 putative surface proteins, all of which are now rational candidates for development as recombinant vaccines or drug targets in the effort to control avian coccidiosis. Conclusions: This paper describes the generation and characterisation of full-length cDNA sequences from E. tenella second generation merozoites and provides new insights into the E. tenella transcriptome. The data generated will be useful for the development and validation of diagnostic and control strategies for coccidiosis and will be of value in annotation of the E. tenella genome sequence.

Abstract

Background: The olive fruit fly, Bactrocera oleae, is the major arthropod pest of commercial olive production, causing extensive damage to olive crops worldwide. Current control techniques rely on spraying of chemical insecticides. The sterile insect technique (SIT) presents an alternative, environmentally friendly and species-specific method of population control. Although SIT has been very successful against other tephritid pests, previous SIT trials on olive fly have produced disappointing results. Key problems included altered diurnal mating rhythms of the laboratory-reared insects, resulting in asynchronous mating activity between the wild and released sterile populations, and low competitiveness of the radiation-sterilised mass-reared flies. Consequently, the production of competitive, male-only release cohorts is considered an essential prerequisite for successful olive fly SIT. Results: We developed a set of conditional female-lethal strains of olive fly (named Release of Insects carrying a Dominant Lethal; RIDL (R)), providing highly penetrant female-specific lethality, dominant fluorescent marking, and genetic sterility. We found that males of the lead strain, OX3097D Bol, 1) are strongly sexually competitive with wild olive flies, 2) display synchronous mating activity with wild females, and 3) induce appropriate refractoriness to wild female re-mating. Furthermore, we showed, through a large proof-of-principle experiment, that weekly releases of OX3097D-Bol males into stable populations of caged wild-type olive fly could cause rapid population collapse and eventual eradication. Conclusions: The observed mating characteristics strongly suggest that an approach based on the release of OX3097D-Bol males will overcome the key difficulties encountered in previous olive fly SIT attempts. Although field confirmation is required, the proof-of-principle suppression and elimination of caged wild-type olive fly populations through OX3097D-Bol male releases provides evidence for the female-specific RIDL approach as a viable method of olive fly control. We conclude that the promising characteristics of OX3097D-Bol may finally enable effective SIT-based control of the olive fly.

Abstract

Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.

Abstract

For the first time, here we announce the complete genome sequence of a field isolate of Peste des petits ruminants virus (PPRV) derived from macerated rectal tissue of a free living bharal (Pseudois nayaur) that displayed clinical disease consistent with severe infection with PPRV. Further, we compare the full genome of this isolate, termed PPRV Tibet/Bharal/2008, with previously available PPRV genomes, including those of virus isolates from domestic small ruminants local to the area where the reported isolate was collected. The current sequence is phylogenetically classified as a lineage IV virus, sharing high levels of sequence identity with previously described Tibetan PPRV isolates. Indeed, across the entire genome, only 26 nucleotide differences (0.16% nucleotide variation) and, consequently, 9 amino acid changes were present compared to sequences of locally derived viruses.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2021 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.