Abstract

Bovine tuberculosis caused by Mycobacterium bovis, is a significant global pathogen causing economic loss in livestock and zoonotic TB in man. Several vaccine approaches are in development including reverse vaccinology which uses an unbiased approach to select open reading frames (ORF) of potential vaccine candidates, produce them as recombinant proteins and assesses their immunogenicity by direct immunization. To provide feasibility data for this approach we have cloned and expressed 123 ORFs from the M. bovis genome, using a mixture of E. coli and insect cell expression. We used a concatenated open reading frames design to reduce the number of clones required and single chain fusion proteins for protein pairs known to interact, such as the members of the PPE-PE family. Over 60% of clones showed soluble expression in one or the other host and most allowed rapid purification of the tagged bTB protein from the host cell background. The catalogue of recombinant proteins represents a resource that may be suitable for test immunisations in the development of an effective bTB vaccine.

Perez-Martin E, Beechler B, Zhang F, Scott K, de Klerk-Lorist L-M, Limon G, Dugovich B, Gubbins S, Botha A, Hetem R, van Schalkwyk L, Juleff N, Maree F F, Jolles A, Charleston B (2022)

Viral dynamics and immune responses to foot-and-mouth disease virus in African buffalo (Syncerus caffer)

Veterinary Research 53 (1), 63

Abstract

Foot-and-mouth disease (FMD) is one of the most important livestock diseases restricting international trade. While African buffalo (Syncerus caffer) act as the main wildlife reservoir, viral and immune response dynamics during FMD virus acute infection have not been described before in this species. We used experimental needle inoculation and contact infections with three Southern African Territories serotypes to assess clinical, virological and immunological dynamics for thirty days post infection. Clinical FMD in the needle inoculated buffalo was mild and characterised by pyrexia. Despite the absence of generalised vesicles, all contact animals were readily infected with their respective serotypes within the first two to nine days after being mixed with needle challenged buffalo. Irrespective of the route of infection or serotype, there were positive associations between the viral loads in blood and the induction of host innate pro-inflammatory cytokines and acute phase proteins. Viral loads in blood and tonsil swabs were tightly correlated during the acute phase of the infection, however, viraemia significantly declined after a peak at four days post-infection (dpi), which correlated with the presence of detectable neutralising antibodies. In contrast, infectious virus was isolated in the tonsil swabs until the last sampling point (30 dpi) in most animals. The pattern of virus detection in serum and tonsil swabs was similar for all three serotypes in the direct challenged and contact challenged animals. We have demonstrated for the first time that African buffalo are indeed systemically affected by FMD virus and clinical FMD in buffalo is characterized by a transient pyrexia. Despite the lack of FMD lesions, infection of African buffalo was characterised by high viral loads in blood and oropharynx, rapid and strong host innate and adaptive immune responses and high transmissibility.

Abstract

Avian leukosis caused by avian leukosis virus (ALV), belonging to the genus Alpharetrovirus of the family Retroviridae, is associated with benign and malignant tumors in hemopoietic cells in poultry. Although several methods have been developed for ALV detection, most of them are not suitable for rapid on-site testing due to instrument limitations, professional operators, or the low sensitivity of the method. Herein, we described the real-time recombinase polymerase amplification (RPA) assay for rapid detection of ALV subgroup J (ALV-J). The major viral structural glycoprotein gp85, highly specific for the subgroup, was used as the molecular target for the real-time RPA assay. The results were obtained at 38 degrees C within 20 min, with the detection sensitivity of 10 copies/mul of standard plasmid pMD18-T-gp85 as the template per reaction. Real-time RPA was capable of ALV-J-specific detection without cross-reaction with other non-targeted avian pathogens. Of the 62 clinical samples tested, the ALV-positive rates of real-time RPA, PCR, and real-time PCR were 66.13% (41/62), 59.68% (37/62), and 67.74% (42/62), respectively. The diagnostic agreement between real-time RPA and real-time PCR was 98.39% (61/62), and the kappa value was 0.9636. The developed real-time ALV-J assay seems promising for rapid and sensitive detection of ALV-J in diagnostic laboratories. It is suitable for on-site detection, especially in a poor resource environment, thus facilitating the prevention and control of ALV-J.

Sanz-Bernardo B, Suckoo R, Haga I R, Wijesiriwardana N, Harvey A, Basu S, Larner W, Rooney S, Sy V, Langlands Z, Denison E, Sanders C, Atkinson J, Batten C, Alphey L, Darpel K E, Gubbins S, Beard P M (2022)

The acquisition and retention of lumpy skin disease virus by blood-feeding insects is influenced by the source of virus, the insect body part, and the time since feeding

Journal of Virology early view, e0075122

Abstract

Lumpy skin disease virus (LSDV) is a poxvirus that causes severe systemic disease in cattle and is spread by mechanical arthropod-borne transmission. This study quantified the acquisition and retention of LSDV by four species of Diptera (Stomoxys calcitrans, Aedes aegypti, Culex quinquefasciatus, and Culicoides nubeculosus) from cutaneous lesions, normal skin, and blood from a clinically affected animal. The acquisition and retention of LSDV by Ae. aegypti from an artificial membrane feeding system was also examined. Mathematical models of the data were generated to identify the parameters which influence insect acquisition and retention of LSDV. For all four insect species, the probability of acquiring LSDV was substantially greater when feeding on a lesion compared with feeding on normal skin or blood from a clinically affected animal. After feeding on a skin lesion LSDV was retained on the proboscis for a similar length of time (around 9 days) for all four species and for a shorter time in the rest of the body, ranging from 2.2 to 6.4 days. Acquisition and retention of LSDV by Ae. aegypti after feeding on an artificial membrane feeding system that contained a high titer of LSDV was comparable to feeding on a skin lesion on a clinically affected animal, supporting the use of this laboratory model as a replacement for some animal studies. This work reveals that the cutaneous lesions of LSD provide the high-titer source required for acquisition of the virus by insects, thereby enabling the mechanical vector-borne transmission. IMPORTANCE Lumpy skin disease virus (LSDV) is a high consequence pathogen of cattle that is rapidly expanding its geographical boundaries into new regions such as Europe and Asia. This expansion is promoted by the mechanical transmission of the virus via hematogenous arthropods. This study quantifies the acquisition and retention of LSDV by four species of blood-feeding insects and reveals that the cutaneous lesions of LSD provide the high titer virus source necessary for virus acquisition by the insects. An artificial membrane feeding system containing a high titer of LSDV was shown to be comparable to a skin lesion on a clinically affected animal when used as a virus source. This promotes the use of these laboratory-based systems as replacements for some animal studies. Overall, this work advances our understanding of the mechanical vector-borne transmission of LSDV and provides evidence to support the design of more effective disease control programmes.

Abstract

In recent years, outbreaks of Marek’s disease (MD) have been frequently reported in vaccinated chicken flocks in China. Herein, we have demonstrated that four Marek’s disease virus (MDV) isolates, HN502, HN302, HN304, and HN101, are all pathogenic and oncogenic to hosts. Outstandingly, the HN302 strain induced 100% MD incidence, 54.84% mortality, and 87.10% tumor incidence, together with extensive atrophy of immune organs. Pathotyping of HN302 was performed in comparison to a standard very virulent (vv) MDV strain Md5. We found that both CVI988 and HVT vaccines significantly reduced morbidity and mortality induced by HN302 or Md5 strains, but the protection indices (PIs) provided by these two vaccines against HN302 were significantly lower (27.03%) or lower (33.33%) than that against Md5, which showed PIs of 59.89% and 54.29%, respectively. These data suggested that HN302 possesses a significant higher virulence than Md5 and at least could be designated as a vvMDV strain. Together with our previous phylogenetic analysis on MDV-1 meq genes, we have presently suggested HN302 to be a typical highly virulent MDV variant belonging to an independent Chinese branch. To our knowledge, this is the first report to provide convincible evidence to identify a pathogenic MDV variant strain with a higher virulence than Md5 in China, which may have emerged and circulating in poultry farms in China for a long time and involved in the recent MD outbreaks.

van Doremalen N, Schulz J E, Adney D R, Saturday T A, Fischer R J, Yinda C K, Thakur N, Newman J, Ulaszewska M, Belij-Rammerstorfer S, Saturday G, Spencer A J, Bailey D, Russell C A, Gilbert S C, Lambe T, Munster V J (2022)

ChAdOx1 nCoV-19 (AZD1222) or nCoV-19-Beta (AZD2816) protect Syrian hamsters against Beta Delta and Omicron variants

Nature Communications 13 (1), 4610

Abstract

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirus-vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 has been shown to have 74% vaccine efficacy against symptomatic disease in clinical trials. However, variants of concern (VoCs) have been detected, with substitutions that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial, even though current real-world data is suggesting good efficacy following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluate the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. Minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 3- or 5- days post inoculation, in contrast to lungs of control animals. In Omicron-challenged hamsters, a single dose of AZD2816 or AZD1222 reduced virus shedding. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.

Abstract

The envelope (E) protein of the avian coronavirus infectious bronchitis virus (IBV) is a small-membrane protein present in two forms during infection: a monomer and a pentameric ion channel. Each form has an independent role during replication; the monomer disrupts the secretory pathway, and the pentamer facilitates virion production. The presence of a T16A or A26F mutation within E exclusively generates the pentameric or monomeric form, respectively. We generated two recombinant IBVs (rIBVs) based on the apathogenic molecular clone Beau-R, containing either a T16A or A26F mutation, denoted as BeauR-T16A and BeauR-A26F. The replication and genetic stability of the rIBVs were assessed in several different cell types, including primary and continuous cells, ex vivo tracheal organ cultures (TOCs) and in ovo. Different replication profiles were observed between cell cultures of different origins. BeauR-A26F replicated to a lower level than Beau-R in Vero cells and in ovo but not in DF1, primary chicken kidney (CK) cells or TOCs. Genetic stability and cytopathic effects were found to differ depending on the cell system. The effect of the T16A and A26F mutations appear to be cell-type dependent, which, therefore, highlights the importance of cell type in the investigation of the IBV E protein.

Abstract

Pseudorabies virus (PRV) is the causative agent of pseudorabies (PR), infecting most mammals and some birds. It has been prevalent around the world and caused huge economic losses to the swine industry since its discovery. At present, the prevention of PRV is mainly through vaccination; there are few specific antivirals against PRV, but it is possible to treat PRV infection effectively with drugs. In recent years, some drugs have been reported to treat PR; however, the variety of anti-pseudorabies drugs is limited, and the underlying mechanism of the antiviral effect of some drugs is unclear. Therefore, it is necessary to explore new drug targets for PRV and develop economic and efficient drug resources for prevention and control of PRV. This review will focus on the research progress in drugs and drug targets against PRV in recent years, and discuss the future research prospects of anti-PRV drugs.

Abstract

OBJECTIVE: To obtain data on the prevalence of antibiotic resistance in bacteria isolated from patients with suspected urinary tract infection in Bulawayo province, Zimbabwe. METHOD: Over a period of one year, 257 urine samples were analyzed for bacteria by standard procedures. Antimicrobial susceptibility testing of isolated bacteria was done using the disk diffusion method. RESULTS: The isolated bacteria were Escherichia coli (40.3%), coagulase negative Staphylococcus (16.1%), Klebsiella spp (11.2%), Staphylococcus aureus (8%), Group A Streptococcus (8%) and Klebsiella oxytoca (8%). Antibiotic susceptibility testing was done using the disc diffusion method on Mueller-Hinton agar. It revealed a high resistance to ampicillin (84.5%) and cotrimoxazole (68.5%) among the Gram negative bacilli. Gram positive cocci showed resistance to Nalidixic acid (81%) and cotrimoxazole (69%). E. coli was susceptible to most of the drugs but 84% of the strains were resistant to ampicillin, and 68% to cotrimoxazole. All isolates were sensitive to Nicene. CONCLUSION: The high levels of ampicillin and cotrimoxazole resistance in E. coli and other enterobactericiae suggest the need to perform urinalysis and antibiotic susceptibility testing in all patients. Nicene should be considered as the first line therapy for all age groups. It is important for physicians to know susceptibility data for UTIs in order to optimize the use of empirical therapy.

Pages

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.