Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2603 results for your search.
Alphey L, Nimmo D, O'Connell S, Alphey N (2008)

Insect population suppression using engineered insects

Transgenesis and the Management of Vector-Borne Disease (edited by S Aksoy) 627, 93-103
Publisher’s version:

Abstract

Suppression or elimination of vector populations is a tried and tested method for reducing vector-borne disease, and a key component of integrated control programs. Genetic methods have the potential to provide new and improved methods for vector control. The required genetic technology is simpler than that required for strategies based on population replacement and is likely to be available earlier. In particular, genetic methods that enhance the Sterile Insect Technique (e.g., RIDL (TM)) are already available for some species.
Bartlett N W, Walton R P, Edwards M R, Aniscenko J, Caramori G, Zhu J, Glanville N, Choy K J, Jourdan P, Burnet J, Tuthill T J, Pedrick M S, Hurle M J, Plumpton C, Sharp N A, Bussell J N, Swallow D M, Schwarze J, Guy B, Almond J W, Jeffery P K, Lloyd C M, Papi A, Killington R A, Rowlands D J, Blair E D, Clarke N J, Johnston S L (2008)

Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation

Nature Medicine 14 (2), 199-204
Publisher’s version: http://dx.doi.org/10.1038/nm1713

Abstract

Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations.
Batten C A, Bachanek-Bankowska K, Bin-Tarif A, Kgosana L, Swain A J, Corteyn M, Darpel K, Mellor P S, Elliott H G, Oura C A (2008)

Bluetongue virus: European Community inter-laboratory comparison tests to evaluate ELISA and RT-PCR detection methods

Veterinary Microbiology 129 (1-2), 80-88

Abstract

European Community national reference laboratories participated in two inter-laboratory comparison tests in 2006 to evaluate the sensitivity and specificity of their ‘in-house’ ELISA and RT-PCR assays for the detection of bluetongue virus (BTV) antibodies and RNA. The first ring trial determined the ability of laboratories to detect antibodies to all 24 serotypes of BTV. The second ring trial, which included both antisera and EDTA blood samples from animals experimentally infected with the northern European strain of BTV-8, determined the ability of laboratories to detect BTV-8 antibodies and RNA, as well as the diagnostic sensitivity of the assays. A total of six C-ELISAs, six real-time RT-PCR and three conventional RT-PCR assays were used. All C-ELISAs were capable of detecting the BTV serotypes currently circulating in Europe (BTV-1, 2, 4, 8, 9 and 16), however some assays displayed inconsistencies in the detection of other serotypes, particularly BTV-19. All C-ELISAs detected BTV-8 antibodies in cattle and sheep by 21 dpi, while the majority of assays detected antibodies by 9 dpi in cattle and 8 dpi in sheep. All the RT-PCR assays were able to detect BTV-8, although the real-time assays were more sensitive compared to the conventional assays. The majority of real-time RT-PCR assays detected BTV RNA as early as 2 dpi in cattle and 3 dpi in sheep. These two ring trails provide evidence that national reference laboratories within the EC are capable of detecting BTV antibodies and RNA and provide specificity and sensitivity information on the detection methods currently available.
Bayry J, Tchilian E Z, Davies M N, Forbes E K, Draper S J, Kaveri S V, Hill A V S, Kazatchkine M D, Beverley P C L, Flower D R, Tough D F (2008)

In silico identified CCR4 antagonists target regulatory T cells and exert adjuvant activity in vaccination

Proceedings of the National Academy of Sciences of the United States of America 105 (29), 10221-10226

Abstract

Adjuvants are substances that enhance immune responses and thus improve the efficacy of vaccination. Few adjuvants are available for use in humans, and the one that is most commonly used (alum) often induces suboptimal immunity for protection against many pathogens. There is thus an obvious need to develop new and improved adjuvants. We have therefore taken an approach to adjuvant discovery that uses in silico modeling and structure-based drug-design. As proof-of-principle we chose to target the interaction of the chemokines CCL22 and CCL17 with their receptor CCR4. CCR4 was posited as an adjuvant target based on its expression on CD4(+)CD25(+) regulatory T cells (Tregs), which negatively regulate immune responses induced by dendritic cells (DC), whereas CCL17 and CCL22 are chemotactic agents produced by DC, which are crucial in promoting contact between DC and CCR4(+) T cells. Molecules identified by virtual screening and molecular docking as CCR4 antagonists were able to block CCL22- and CCL17-mediated recruitment of human Tregs and Th2 cells. Furthermore, CCR4 antagonists enhanced DC-mediated human CD4(+) T cell proliferation in an in vitro immune response model and amplified cellular and humoral immune responses in vivo in experimental models when injected in combination with either Modified Vaccinia Ankara expressing Ag85A from Mycobacterium tuberculosis (MVA85A) or recombinant hepatitis B virus surface antigen (rHB-sAg) vaccines. The significant adjuvant activity observed provides good evidence supporting our hypothesis that CCR4 is a viable target for rational adjuvant design.

Abstract

There is a worldwide epidemic of increasingly drug-resistant TB. Bacillus Calmette-Guerin vaccination provides partial protection against disseminated disease in infants but poor protection against later pulmonary TB. Cell-mediated protection against respiratory virus infections requires the presence of T cells in lung tissues, and the most effective prime-boost immunizations for Mycobacterium tuberculosis also induce lung-resident lymphocytes. These observations need to be taken into account when designing future vaccines against M. tuberculosis.

Abstract

The cattle major histocompatibility complex (MHC) region contains a variable number of classical class I genes encoding polymorphic, ubiquitously expressed molecules with a role in antigen presentation. Class I cDNA sequences have previously been reported that are thought to derive from putative nonclassical class I genes. We have located four nonclassical class I genes within the cattle genome; three are close to the MIC genes, and one is close to the classical class I genes. The genomic position relative to anchor genes is very similar to the arrangement reported in the pig MHC region. We have designed gene-specific oligonucleotide primers with which to investigate the presence of these genes in distinct and well-defined MHC haplotypes and to assess transcription in different cell types. Analysis and comparison of all sequences allows an assessment of allelic variation in each case. Partial characterisation gives an indication of the possible role and likely importance of each of these genes.

Abstract

Major histocompatibility complex (MHC) class I chain-related (MIC) genes have been previously identified and characterised in human. They encode polymorphic class I-like molecules that are stress-inducible, and constitute one of the ligands of the activating natural killer cell receptor NKG2D. We have identified three MIC genes within the cattle genome, located close to three non-classical MHC class I genes. The genomic position relative to other genes is very similar to the arrangement reported in the pig MHC region. Analysis of MIC cDNA sequences derived from a range of cattle cell lines suggest there may be four MIC genes in total. We have investigated the presence of the genes in distinct and well-defined MHC haplotypes, and show that one gene is consistently present, while configuration of the other three genes appears variable.

Abstract

Bluetongue virus (BTV), an insect-vectored emerging pathogen of both wild ruminants and livestock, has had a severe economic impact in agriculture in many parts of the world. The investigation of BTV replication and pathogenesis has been hampered by the lack of a reverse genetics system. Recovery of infectious BTV is possible by the transfection of permissive cells with the complete set of 10 purified viral mRNAs derived in vitro from transcribing cores (M. Boyce and P. Roy, J. Virol. 81:2179-2186, 2007). Here, we report that in vitro synthesized T7 transcripts, derived from cDNA clones, can be introduced into the genome of BTV using a mixture of T7 transcripts and core-derived mRNAs. The replacement of genome segment 10 and the simultaneous replacement of segments 2 and 5 encoding the two immunologically important outer capsid proteins, VP2 and VP5, are described. Further, we demonstrate the recovery of infectious BTV entirely from T7 transcripts, proving that synthetic transcripts synthesized in the presence of cap analogue can functionally substitute for viral transcripts at all stages of the BTV replication cycle. The generation of BTV with a fully defined genome permits the recovery of mutations in a defined genetic background. The ability to generate specific mutants provides a new tool to investigate the BTV replication cycle as well as permitting the generation of designer vaccine strains, which are greatly needed in many countries.

Abstract

In this study we estimate the seroprevalence of foot-and-mouth disease virus (FMDV) in wildlife from eastern and central Africa. Sera were sourced from between 1994 and 2002 from a rinderpest surveillance program. Our study compared a nonstructural protein enzyme-linked immunosorbent assay (Cedi test) with a virus neutralization test. The study shows that there is only a low seroprevalence of FMDV in sampled nonbuffalo species. The seroprevalence in the Cape buffalo was high for SAT2, lower for SAT1, and lowest for SAT3. As the SAT2 serotype was most prevalent, the Cedi test largely reflected the occurrence of SAT2-positive animals. The results also suggest that SAT2 became dominant around 1998, with a large increase in seroprevalence. The sensitivity and specificity of the Cedi test were estimated by comparison to the combined virus neutralization test results from all three SAT tests. A Bayesian implementation of the Hui-Walter latent class model was used to estimate the test parameters. The model permits estimation in the absence of a gold standard test. The final model, using noninformative priors and assuming conditional independence of test performance, estimated Cedi test sensitivity at 87.7% and specificity at 87.3%. These estimates are similar to those for domestic bovines; they suggest that the Cedi test is a useful tool for screening buffalo for infection with the various serotypes of FMDV.

Abstract

The genomic coding sequences, apart from the inverted terminal repeats and cross-links, have been determined for two African swine fever virus (ASFV) isolates from the same virus genotype, a non-pathogenic isolate from Portugal, OURT88/3, and a highly pathogenic isolate from West Africa, Benin 97/1. These genome sequences were annotated and compared with that of a tissue culture-adapted isolate, BA71V. The genomes range in length between 170 and 182?kbp and encode between 151 and 157 open reading frames (ORFs). Compared to the Benin 97/1 isolate, the OURT88/3 and BA71V isolates have deletions of 8–10?kbp that encode six copies of the multigene family (MGF) 360 and either one MGF 505/530 copy in the BA71V or two copies in the OURT88/3 isolate. The BA71V isolate has a deletion, close to the right end of the genome, of 3?kbp compared with the other isolates. The five ORFs in this region include an additional copy of an ORF similar to that encoding the p22 virus structural protein. The OURT88/3 isolate has interruptions in ORFs that encode a CD2-like and a C-type lectin protein. Variation between the genomes is observed in the number of copies of five different MGFs. The 109 non-duplicated ORFs conserved in the three genomes encode proteins involved in virus replication, virus assembly and modulation of the host's defences. These results provide information concerning the genetic variability of African swine fever virus isolates that differ in pathogenicity.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.