Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2603 results for your search.

Abstract

Background: The Asian tiger mosquito, Aedes albopictus (Skuse), is a vector of several arboviruses including dengue and chikungunya. This highly invasive species originating from Southeast Asia has travelled the world in the last 30 years and is now established in Europe, North and South America, Africa, the Middle East and the Caribbean. In the absence of vaccine or antiviral drugs, efficient mosquito control strategies are crucial. Conventional control methods have so far failed to control Ae. albopictus adequately. Methodology/Principal Findings: Germline transformation of Aedes albopictus was achieved by micro-injection of embryos with a piggyBac-based transgene carrying a 3xP3-ECFP marker and an attP site, combined with piggyBac transposase mRNA and piggyBac helper plasmid. Five independent transgenic lines were established, corresponding to an estimated transformation efficiency of 2-3%. Three lines were re-injected with a second-phase plasmid carrying an attB site and a 3xP3-DsRed2 marker, combined with PhiC31 integrase mRNA. Successful site-specific integration was observed in all three lines with an estimated transformation efficiency of 2-6%. Conclusions/Significance: Both piggybac-and site-specific PhiC31-mediated germline transformation of Aedes albopictus were successfully achieved. This is the first report of Ae. albopictus germline transformation and engineering, a key step towards studying and controlling this species using novel molecular techniques and genetic control strategies.
Lallinger G, Zweygarth E, Bell-Sakyi L, Passos L M F (2010)

Cold storage and cryopreservation of tick cell lines

Parasites and Vectors 3, 5

Abstract

Background: Tick cell lines are now available from fifteen ixodid and argasid species of medical and veterinary importance. However, some tick cell lines can be difficult to cryopreserve, and improved protocols for short- and long-term low temperature storage will greatly enhance their use as tools in tick and tick-borne pathogen research. In the present study, different protocols were evaluated for cold storage and cryopreservation of tick cell lines derived from Rhipicephalus (Boophilus) decoloratus, Rhipicephalus (Boophilus) microplus, Ixodes ricinus and Ixodes scapularis. For short-term cold storage, cells were kept under refrigeration at 6 C for 15, 30 and 45 days. For cryopreservation in liquid nitrogen, use of a sucrose-phosphate-glutamate freezing buffer (SPG) as cryoprotectant was compared with dimethylsulfoxide (DMSO) supplemented with sucrose. Cell viability was determined by the trypan blue exclusion test and cell morphology was evaluated in Giemsa-stained cytocentrifuge smears. Results: Cold storage at 6 degrees C for up to 30 days was successful in preserving R. (B.) microplus, R. (B.) decoloratus, I. ricinus and I. scapularis cell lines; lines from the latter three species could be easily re-cultivated after 45 days under refrigeration. While cell lines from all four tick species cryopreserved with 6% DMSO were successfully resuscitated, the R. (B.) decoloratus cells did not survive freezing in SPG and of the other three species, only the R. (B.) microplus cells resumed growth during the observation period. Conclusions: This constitutes the first report on successful short-term refrigeration of cells derived from R. (B.) decoloratus, R. (B.) microplus, and I. ricinus, and use of SPG as an alternative to DMSO for cryopreservation, thus making an important contribution to more reliable and convenient tick cell culture maintenance.

Abstract

Background: Combinatorial RNA interference (co-RNAi) is a valuable tool for highly effective gene suppression of single and multiple-genes targets, and can be used to prevent the escape of mutation-prone transcripts. There are currently three main approaches used to achieve co-RNAi in animal cells; multiple promoter/shRNA cassettes, long hairpin RNAs (lhRNA) and miRNA-embedded shRNAs, however, the relative effectiveness of each is not known. The current study directly compares the ability of each co-RNAi method to deliver pre-validated siRNA molecules to the same gene targets. Results: Double-shRNA expression vectors were generated for each co-RNAi platform and their ability to suppress both single and double-gene reporter targets were compared. The most reliable and effective gene silencing was achieved from the multiple promoter/shRNA approach, as this method induced additive suppression of single-gene targets and equally effective knockdown of double-gene targets. Although both lhRNA and microRNA-embedded strategies provided efficient gene knockdown, suppression levels were inconsistent and activity varied greatly for different siRNAs tested. Furthermore, it appeared that not only the position of siRNAs within these multi-shRNA constructs impacted upon silencing activity, but also local properties of each individual molecule. In addition, it was also found that the insertion of up to five promoter/shRNA cassettes into a single construct did not negatively affect the efficacy of each individual shRNA. Conclusions: By directly comparing the ability of shRNAs delivered from different co-RNA platforms to initiate knockdown of the same gene targets, we found that multiple U6/shRNA cassettes offered the most reliable and predictable suppression of both single and multiple-gene targets. These results highlight some important strengths and pitfalls of the currently used methods for multiple shRNA delivery, and provide valuable insights for the design and application of reliable co-RNAi
Lamien C E, Lelenta M, Silber R, Goff C l, Wallace D, Gulyaz V, Tuppurainen E, Luckins A G, Albina E, Diallo A (2010)

Phylogenetic analysis of the capripoxvirus RPO30 gene and its use in a PCR test for differentiating sheep poxvirus from goat poxvirus

Sustainable improvement of animal production and health. FAO/IAEA International Symposium on Sustainable Improvement of Animal Production and Health, Vienna, Austria, 8-11 June 2009., 323-326
Publisher’s version:

Abstract

The Genus Capripoxvirus (CaPV) of the Poxviridae family comprises sheep poxvirus (SPPV), goat poxvirus (GTPV) and lumpy skin disease virus (LSDV) which are responsible for economically important diseases affecting sheep, goats and cattle respectively. To date, there have been no molecular criteria upon which to base strain designation. The complexity of CaPVs host specificity shows the need to develop more reliable tools for CaPVs identification than the current method which is based on the host origin. Previous reports, based on partial or full genome sequencing indicated that CaP viruses are genetically distinct from each other and can be grouped as three different species: SPPV, GTPV and LSDV. In contributing to the creation of more stringent data for genotyping CaPVs, we have analysed the RPO30 gene of several isolates. The phylogenetic reconstructions have shown that the viruses can be segregated into three different lineages according to their host origins: the SPPV, the GTPV and the LSDV lineages. In addition, a 21-nucleotides deletion found in all individuals within only the SPPV group was exploited to design a classical PCR method to differentiate SPPV from GTPV. This test allows the rapid differential diagnosis of diseases caused by either SPPV or GTPV strains.

Abstract

Salmonella enterica serovar Typhimurium is an animal and zoonotic pathogen of worldwide importance. Intestinal colonization, induction of enteritis and systemic translocation by this bacterium requires type III protein secretion. Strategies that target this process have the potential to control infection, pathology and transmission. We defined the global transcriptional response of S. Typhimurium to INP0403, a member of a family of salicylidene acylhydrazides that inhibit type III secretion (T3S). INP0403 treatment was associated with reduced transcription of genes involved in T3S, but also increased transcription of genes associated with iron acquisition. We show that INP0403 restricts iron availability to Salmonella, and that inhibition of T3S system-1 by INP0403 is, at least in part, reversible by exogenous iron and independent of the iron response regulator Fur.

Abstract

Epizootic hemorrhagic disease virus (EHDV) is a Culicoides-transmitted orbivirus that infects domestic and wild ruminants and is provisionally thought to be distributed throughout Africa, North America, Australia, East Asia and the Middle East. Historically, of the seven proposed serotypes of EHDV, only EHDV-1 and EHDV-2 have been reported from North America. In 2006, EHDV isolates were recovered from moribund or dead white-tailed deer (Odocoileus virginianus) in Indiana and Illinois that could not be identified as either EHDV-1 or EHDV-2 by virus neutralization tests or by serotype-specific RT-PCR. Additional serological and genetic testing identified the isolates as EHDV-6, a serotype that, although originally described from Australia, has recently been recognized as an emerging pathogen of cattle in Morocco, Algeria and Turkey. In 2007 and 2008, EHDV-6 was isolated again from white-tailed deer, this time in Missouri, Kansas and Texas, suggesting that the virus is capable of overwintering and that it may become, or already is, endemic in a geographically widespread region of the USA. Genetic characterization of the virus indicates that it is a reassortant, such that the outer capsid proteins determining serotype specificity (VP2 and VP5) are derived from exotic EHDV-6, whilst the remaining structural and non-structural proteins are apparently obtained from indigenous EHDV-2 (Alberta).
Alphey L, Benedict M, Bellini R, Clark G G, Dame D A, Service M W, Dobson S L (2010)

Sterile-insect methods for control of mosquito-borne diseases: An analysis

Vector-Borne and Zoonotic Diseases 10 (3), 295-311

Abstract

Effective vector control, and more specifically mosquito control, is a complex and difficult problem, as illustrated by the continuing prevalence (and spread) of mosquito-transmitted diseases. The sterile insect technique and similar methods control certain agricultural insect pest populations in a species-specific, environmentally sound, and effective manner; there is increased interest in applying this approach to vector control. Such an approach, like all others in use and development, is not a one-size-fits-all solution, and will be more appropriate in some situations than others. In addition, the proposed release of pest insects, and more so genetically modified pest insects, is bound to raise questions in the general public and the scientific community as to such a method's efficacy, safety, and sustainability. This article attempts to address these concerns and indicate where sterile-insect methods are likely to be useful for vector control.

Abstract

Culicoides biting midges (Diptera: Ceratopogonidae) are responsible for the spread of several arboviruses of livestock and humans that are of international importance. This study assesses the virulence of 18 insect-pathogenic fungal strains from the genera Metarhizium, Beauveria, Isaria and Lecanicillium to larval stages of Culicoides nubeculous Meigen as a means of examining their potential as biocontrol agents. In initial screening, six strains of M. anisopliae (ERL700, CA1, V275, LRC181A, ARSEF 3291 and ARSEF 4556) outperformed the other tested genera and were found to cause between 90% and 100% larval mortality in all larval instars of this species at 72 h post inoculation. The virulence of the most effective strain, M. anisopliae V275, was then further tested by exposing larvae to doses which ranged from 104–108 conidia/ml and recording mortality at 24, 48 and 72 h in a 24-multi-well plate with each well containing 600 ?l of water and at 24 and 48 h in 250 ml plastic cups containing 50 ml of water. Sensitivity of larvae was extremely high in the multi-well plates, with LC50 values of 4.3–4.5 × 103 conidia/ml and no significant differences between larval instars. In the 250 ml cups, M. anisopliae V275 caused mortalities of between 70% and 100% to larvae and later instars exhibited higher mortality rates. The results are discussed in relation to incorporation of M. anisopliae into biocontrol programmes to control arboviruses vectored by Culicoides.

Abstract

Epizootic haemorrhagic disease virus is a 10-segmented, double-stranded RNA virus. When these ten segments of dsRNA are run on 1% agarose, eastern (Australia, Japan) and western (North America, Africa, Middle-East) strains of the virus can be separated phenotypically based on the migration of genome segments 7-9. In western strains, segments 7-9 are roughly the same size and co-migrate as a single RNA band. In eastern strains, segment 9 is smaller, so while segments 7 and 8 co-migrate, the segment 9 RNA runs faster than its western homologue. Translation experiments demonstrated that these two segment 9 homologues are both functional and produce proteins (VP6) of different sizes-something that has not been reported in any other orbivirus species to date. Sequence analysis suggests that eastern and western versions of segment 9 (VP6) have likely evolved as a response to adaptive selection in different geographical regions via gene duplication and subsequent mutation. These significant findings are considered unusual given the conserved nature of VP6 and its presumed role as the viral helicase. It is not currently known what the biological relevance of each homologue is to the virus

Abstract

In common with other positive-strand RNA viruses, replication of feline calicivirus (FCV) results in rearrangement of intracellular membranes and production of numerous membrane-bound vesicular structures on which viral genome replication is thought to occur. In this study, bioinformatics approaches have identified three of the FCV non-structural proteins, namely p32, p39 and p30, as potential transmembrane proteins. These proteins were able to target enhanced cyan fluorescent protein to membrane fractions where they behaved as integral membrane proteins. Immunofluorescence microscopy of these proteins expressed in cells showed co-localization with endoplasmic reticulum (ER) markers. Further electron microscopy analysis of cells co-expressing FCV p39 or p30 with a horseradish peroxidase protein containing the KDEL ER retention motif demonstrated gross morphological changes to the ER. Similar reorganization patterns, especially for those produced by p30, were observed in naturally infected Crandel–Rees feline kidney cells. Together, the data demonstrate that the p32, p39 and p30 proteins of FCV locate to the ER and lead to reorganization of ER membranes. This suggests that they may play a role in the generation of FCV replication complexes and that the endoplasmic reticulum may represent the potential source of the membrane vesicles induced during FCV infection.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.