Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2603 results for your search.

Abstract

Epizootic haemorrhagic disease virus (EHDV) infects wild ruminants, causing a frequently fatal haemorrhagic disease. However, it can also cause bluetongue-like disease in cattle, involving significant levels of morbidity and mortality, highlighting a need for more rapid and reliable diagnostic assays. EHDV outer-capsid protein VP2 (encoded by genome-segment 2 [Seg-2]) is highly variable and represents the primary target for neutralising antibodies generated by the mammalian host. Consequently VP2 is also the primary determinant of virus “serotype”, as identified in virus neutralisation tests (VNT). Although previous reports have indicated eight to ten EHDV serotypes, recent serological comparisons and molecular analyses of Seg-2 indicate only seven EHDV “types”. Oligonucleotide primers were developed targeting Seg-2, for use in conventional RT-PCR assays to detect and identify these seven types. These assays, which are more rapid and sensitive, still show complete agreement with VNT and were used to identify recent EHDV isolates from the Mediterranean region and North America.

Abstract

In mid September 2008, clinical signs of bluetongue (particularly coronitis) were observed in cows on three different farms in eastern Netherlands (Luttenberg, Heeten, and Barchem), two of which had been vaccinated with an inactivated BTV-8 vaccine (during May-June 2008). Bluetongue virus (BTV) infection was also detected on a fourth farm (Oldenzaal) in the same area while testing for export. BTV RNA was subsequently identified by real time RT-PCR targeting genome-segment (Seg-) 10, in blood samples from each farm. The virus was isolated from the Heeten sample (IAH “dsRNA virus reference collection” [dsRNA-VRC] isolate number NET2008/05) and typed as BTV-6 by RT-PCR targeting Seg-2. Sequencing confirmed the virus type, showing an identical Seg-2 sequence to that of the South African BTV-6 live-vaccine-strain. Although most of the other genome segments also showed very high levels of identity to the BTV-6 vaccine (99.7 to 100%), Seg-10 showed greatest identity (98.4%) to the BTV-2 vaccine (RSAvvv2/02), indicating that NET2008/05 had acquired a different Seg-10 by reassortment. Although Seg-7 from NET2008/05 was also most closely related to the BTV-6 vaccine (99.7/100% nt/aa identity), the Seg-7 sequence derived from the blood sample of the same animal (NET2008/06) was identical to that of the Netherlands BTV-8 (NET2006/04 and NET2007/01). This indicates that the blood contained two different Seg-7 sequences, one of which (from the BTV-6 vaccine) was selected during virus isolation in cell-culture. The predominance of the BTV-8 Seg-7 in the blood sample suggests that the virus was in the process of reassorting with the northern field strain of BTV-8. Two genome segments of the virus showed significant differences from the BTV-6 vaccine, indicating that they had been acquired by reassortment event with BTV-8, and another unknown parental-strain. However, the route by which BTV-6 and BTV-8 entered northern Europe was not established.

Abstract

T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8(+) T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1(214-224) epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design.
Manjunatha B N, Prasad M, Maan S, Prasad G (2010)

Differentiation of Indian isolates of bluetongue virus serotype 1 from Australian and African isolates based on analysis of vp5 gene

Indian Journal of Biotechnology 9 (2), 117-125

Abstract

Bluetongue virus (BTV), prototype species of genus Orbivirus, belongs to the family Reoviridae. It is a non-enveloped, double shelled virus with ten segmented dsRNA genome. RNA segment 6 encodes an outer capsid serotype specific virus protein VP5. A pair of primers (forward 207-229 bp & reverse 1284-1304) was designed from the published BTV-1 segment 6 sequences to specifically amplify vp5 gene from Indian isolates of BTV. These primers specifically amplified PCR product of 1098 bp from cell culture adapted isolates of BTV-1 (Hisar isolate-BTV-1H, Avikanagar isolate-BTV-1A and Sirsa isolate-BTV-1S(3)), but did not give any amplification with BTV-9 and BTV-23, indicating serotype specificity. vp5 coding sequences amplified from Indian BTV-1 isolates were cloned into pPCR Script (TM) Amp SK (+) vector and transformed into XL10-Gold (R) Kan ultracompetent Escherichia coli cells. The positive clones selected by blue white screening and colony touch PCR were sequenced. The sequence analysis of the vp5 gene (253-1255 bp) revealed that Indian isolates of BTV-1 showed 89-91.1% nucleotide identity with Australian isolates of BTV-1, whereas it showed only 77-79.7% similarity with the BTV-1 African isolates. All three Indian isolates shared 99.4% nucleotide sequence similarity amongst themselves. Comparison of the deduced amino acid sequences revealed that the Indian BTV-1 isolates shared 96.7-98.8% and 94.9-95.8% amino acid similarity with Australian and African BTV-1 isolates, respectively. In silico restriction enzyme (RE) profile analysis of vp5 gene sequences showed that Indian isolates of BTV-1 can be differentiated from other BTV-1 isolates from South Africa and Australia using TaqI and BsmI restriction endonucleases.
Mankouri J, Fragkoudis R, Richards K H, Wetherill L F, Harris M, Kohl A, Elliott R M, Macdonald A (2010)

Optineurin negatively regulates the induction of IFNbeta in response to RNA virus infection

PLoS Pathogens 6 (2), e1000778

Abstract

The innate immune response provides a critical defense against microbial infections, including viruses. These are recognised by pattern recognition receptors including Toll-like receptors (TLRs) and RIG-I like helicases (RLHs). Detection of virus triggers signalling cascades that induce transcription of type I interferons including IFNbeta, which are pivotal for the initiation of an anti-viral state. Despite the essential role of IFNbeta in the anti-viral response, there is an incomplete understanding of the negative regulation of IFNbeta induction. Here we provide evidence that expression of the Nemo-related protein, optineurin (NRP/FIP2), has a role in the inhibition of virus-triggered IFNbeta induction. Over-expression of optineurin inhibited Sendai-virus (SeV) and dsRNA triggered induction of IFNbeta, whereas depletion of optineurin with siRNA promoted virus-induced IFNbeta production and decreased RNA virus replication. Immunoprecipitation and immunofluorescence studies identified optineurin in a protein complex containing the antiviral protein kinase TBK1 and the ubiquitin ligase TRAF3. Furthermore, mutagenesis studies determined that binding of ubiquitin was essential for both the correct sub-cellular localisation and the inhibitory function of optineurin. This work identifies optineurin as a critical regulator of antiviral signalling and potential target for future antiviral therapy.
Matthijnssens J, Taraporewala Z F, Yang H, Rao S J, Yuan L, Cao D, Hoshino Y, Mertens P P C, Carner G R, McNeal M, Sestak K, Van R M, Patton J T (2010)

Simian rotaviruses possess divergent gene constellations that originated from interspecies transmission and reassortment

Journal of Virology 84 (4), 2013-2026

Abstract

Although few simian rotaviruses (RVs) have been isolated, such strains have been important for basic research and vaccine development. To explore the origins of simian RVs, the complete genome sequences of strains PTRV (G8P[1]), RRV (G3P[3]), and TUCH (G3P[24]) were determined. These data allowed the genotype constellations of each virus to be determined and the phylogenetic relationships of the simian strains with each other and with nonsimian RVs to be elucidated. The results indicate that PTRV was likely transmitted from a bovine or other ruminant into pig-tailed macaques (its host of origin), since its genes have genotypes and encode outer-capsid proteins similar to those of bovine RVs. In contrast, most of the genes of rhesus-macaque strains, RRV and TUCH, have genotypes more typical of canine-feline RVs. However, the sequences of the canine and/or feline (canine/feline)-like genes of RRV and TUCH are only distantly related to those of modern canine/feline RVs, indicating that any potential transmission of a progenitor of these viruses from a canine/feline host to a simian host was not recent. The remaining genes of RRV and TUCH appear to have originated through reassortment with bovine, human, or other RV strains. Finally, comparison of PTRV, RRV, and TUCH genes with those of the vervet-monkey RV SA11-H96 (G3P[2]) indicates that SA11-H96 shares little genetic similarity to other simian strains and likely has evolved independently. Collectively, our data indicate that simian RVs are of diverse ancestry with genome constellations that originated largely by interspecies transmission and reassortment with nonhuman animal RVs.
McIntyre K M, Trewby H, Gubbins S, Baylis M (2010)

The impact of sheep breed on the risk of classical scrapie

Epidemiology and Infection 138 (3), 384-392

Abstract

The risk of classical scrapie in sheep is associated with polymorphisms in the prion protein (PrP) gene. In recent years, large-scale selective breeding programmes for sheep at lower risk of disease have been undertaken across the European Union. We analysed large-scale datasets on scrapie and sheep demography to investigate additional effects of sheep breed on scrapie risk. There was evidence for variation between certain breeds in the scrapie risk of some PrP genotypes, which could be caused by innate breed differences or distinct scrapie strains circulating within them. While the PrP genotypes of cases are generally consistent across breeds, some exceptions provide evidence that scrapie strain may influence affected PrP genotypes to a greater extent than innate breed differences. There was a significant association between the breed-level incidence of scrapie and the frequency of susceptible PrP genotypes in breeds. Our results lend support to selective breeding programmes which aim to reduce the frequency of high-risk PrP genotypes with measures not varying by sheep breed.

Abstract

Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious acute vesicular disease affecting cloven-hoofed animals, including cattle, sheep and pigs. The current vaccine induces a rapid humoral response, but the duration of the protective antibody response is variable, possibly associated with a variable specific CD4+ T cell response. We investigated the use of heat shock protein 70 (Hsp70) as a molecular chaperone to target viral antigen to the Major Histocompatibility Complex (MHC) class II pathway of antigen presenting cells and generate enhanced MHC II-restricted CD4+ T cell responses in cattle. Monocytes and CD4+ T cells from FMDV vaccinated cattle were stimulated in vitro with complexes of Hsp70 and FMDV peptide, or peptide alone. Hsp70 was found to consistently improve the presentation of a 25-mer FMDV peptide to CD4+ T cells, as measured by T cell proliferation. Complex formation was required for the enhanced effects and Hsp70 alone did not stimulate proliferation. This study provides further evidence that Hsp70:peptide complexes can enhance antigen-specific CD4+ T cell responses in vitro for an important pathogen of livestock.

Abstract

TRIM (tripartite motif) proteins are a family of RING (really interesting new gene) domain-containing proteins comprising more than 70 human members, with new members still being described. In addition to their involvement in cell proliferation, differentiation, development, morphogenesis, and apoptosis, roles in immune signaling and antiviral functions are emerging. In response to viral infection, TRIM25 ubiquitinates the N terminus of the viral RNA receptor retinoic acid-inducible gene-I (RIG-I), and this modification is essential for RIG- I to interact with its downstream partner mitochondrial antiviral signaling (MAVS). TRIM25 activity thus leads to activation of the RIG- I signaling pathway, which results in type I interferon production to limit viral replication. Recently, it has been demonstrated that influenza A viruses target TRIM25 and disable its antiviral function, thereby suppressing the host interferon response. This Journal Club article highlights the emerging roles of TRIM proteins in antiviral defense mechanisms and an immune evasion strategy in which influenza viruses target a member of the TRIM family.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.