Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2602 results for your search.

Abstract

The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU.

Abstract

Vaccination of neonatal calves with Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces a significant degree of protection against infection with virulent M. bovis, the causative agent of bovine tuberculosis (bTB). We compared two strains of BCG, Pasteur and Danish, in order to confirm that the current European human vaccine strain (BCG Danish) induced protective immunity in calves, and we assessed immune responses to determine correlates of protection that could assist future vaccine evaluation in cattle. Both vaccine strains induced antigen (purified protein derivate [PPD])-specific gamma interferon (IFN-?) in whole-blood cultures. These responses were not significantly different for BCG Pasteur and BCG Danish and peaked at week 2 to 4 postvaccination. Vaccination with either BCG Danish or BCG Pasteur induced significant protection against bTB, with reductions in both lesion score and bacteriological burden evident in both groups of vaccinated calves compared with nonvaccinated control calves. Measurement of IFN-?-expressing T lymphocytes postvaccination and postchallenge revealed both correlates and surrogates of protective efficacy. The frequency of central memory T lymphocytes present at 12 weeks postvaccination (at the time of M. bovis challenge) correlated significantly with protection. Conversely, the number of IFN-?-expressing effector T cells present after M. bovis challenge was correlated with disease. These results demonstrate that vaccination of neonatal calves with either BCG Pasteur or BCG Danish induces protective immune responses against TB. In addition, we show that measurement of antigen-specific T lymphocyte populations may provide a reliable means for identifying protective vaccine candidates.

Abstract

The objective of this study was to identify proteomic patterns in sera for the early detection of Schistosoma japonicum infections in a rabbit model. Proteomic patterns were to be established by profiling serum proteins using magnetic bead (MB) separation and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Forty rabbits were randomly allocated to two groups. One group was infected with 1500 S. japonicum cercariae, the other served as non-infected control. An additional group of Toxoplasma gondii-infected rabbits served as specificity control group. Sera were obtained from each rabbit once a week post-infection and were subject to weak cation exchange beads (MB-WCX) treatment, followed by MALDI-TOF MS analysis. The proteomic pattern of infected and control rabbits was established 7 weeks post-infection with the ClinProTool MS data analysis program. Seven peaks with a clear difference in amplitude between the infected and control groups were detected, 4 peaks with mass charge ratio (m/z) of 1787, 2834, 3484 and 3531 were up-regulated and 3 peaks with a m/z of 1715, 3151 and 4018 were down-regulated in infected rabbits. The established diagnostic proteomic pattern was highly sensitive and specific. In weeks 1–4 post-infection, characteristic proteomic patterns could be detected in 30%, 55%, 75% and 80% of the infected rabbits, whereas ELISA testing resulted in positive results from week 3 onwards. All T. gondii control sera were classified S. japonicum negative. MALDI-TOF MS coupled with MB separation enables early, rapid and accurate diagnosis of schistosomiasis in a rabbit model.

Abstract

The T-box transcription factor mab-9 has been shown to be required for the correct fate of the male-specific blast cells B and F, normal posterior hypodermal morphogenesis, and for the correct axon migration of motor neurons that project circumferential commissures to dorsal muscles. In this study, an RNAi screen designed to identify upstream transcriptional regulators of mab-9 showed that silencing of unc-4 (encoding a paired-class homeodomain protein) increases mab-9::gfp expression in the nervous system, specifically in posterior DA motor neurons. Over-expression of unc-4 from a heat-shock promoter has the opposite effect, causing repression of mab-9 in various cells. We find that mab-9 expression in unc-37 mutants is also elevated in DA motor neurons, consistent with known roles for UNC-37 as a co-repressor with UNC-4. These results identify mab-9 as a novel target of the UNC-4/UNC-37 repressor complex in motor neurons, and suggest that mis-expression of mab-9 may contribute to the neuronal wiring defects in unc-4 and unc-37 mutants.

Abstract

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) has shown promise in species identification of insect species. We evaluated its potential to consistently characterize laboratory-reared biting midges of the species Culicoides nubeculosus (Meigen) (Diptera: Ceratopogonidae). Twenty-one reproducible potential biomarker masses for C. nubeculosus were identified under different experimental treatments. These treatments included the homogenization of insects in either water or known concentrations of formic acid. The biomarker masses were present independent of age, gender and different periods of storage of individuals in 70% ethanol (a standard preservation method). It was found that the presence of blood in females reduced the intensity of the MALDI-TOF pattern, necessitating the removal of the abdomen before analysis. The protein profiles of a related non-biting midge, Forcipomyia sp. (Diptera: Ceratopogonidae), and of Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) mosquitoes were also examined and were distinctly different. These findings provide preliminary data to optimize future studies in differentiation of species within the Culicoides genus using MALDI-TOF MS which is a rapid, simple, reliable and cost-effective technique.

Abstract

An outbreak of epizootic haemorrhagic disease virus (EHDV) in cattle in Israel in 2006 enabled a comparison of the spatial distribution of epidemic exposure to EHDV with that of exposure to bluetongue virus (BTV), which is endemic in the country. The seroprevalence of both viruses was examined in 1650 serum samples collected from 139 farms representative of the spatial distribution of dairy cattle in Israel. A significant association between exposure to EHDV and BTV was demonstrated in both univariate and multivariate analyses. Recent exposure to BTV and EHDV (demonstrated by seroprevalence in calves) was clustered in different geographical locations, indicating that the two viruses had different patterns of spread, that of EHDV being influenced by winds and terrain barriers and that of BTV by herd immunity.

Abstract

Epizootic hemorrhagic disease virus (EHDV) is an Orbivirus. While not previously considered as an important disease in cattle, several EHDV serotypes (EHDV-6 and 7) have recently been implicated in disease outbreaks. The involvement of sheep in the epidemiology of EHDV is still not understood. In this study we compared the prevalence of antibodies to EHDV and bluetongue virus (BTV) in sheep to their prevalence in cattle after an outbreak of EHDV that occurred in Israel during 2006. Sixty-six sheep and lambs scattered in seven herds were compared to 114 cows and calves scattered in 13 dairy cattle herds, matched to the sheep herds by location. While antibody prevalence to EHDV was high in cattle (35.2% within the outbreak zone) no evidence of exposure to EHDV was found in sheep (p

Abstract

The ability to propagate foot-and-mouth disease virus (FMDV) plays an important role in laboratory diagnosis and the production of vaccines to control the spread of the disease. Many established cell lines suffer from poor sensitivity for isolating virus from field samples. One possible factor that limits sensitivity to FMDV is the lack of expression of surface integrins, the primary class of cell receptor used by FMDV to initiate infection. In this study we have sequenced cDNAs encoding these molecules for pigs and subsequently developed quantitative real-time reverse transcription (RT)-PCR assays to quantify underlying mRNA transcription of integrin molecules. These novel assays were used together with flow-cytometry to determine cell surface expression and of 4 different cell culture systems. These studies have identified a clear correlation of sensitivity to FMDV with expression of integrins ?V?6 and ?V?8. In contrast, cell surface expression of ?V?3 or mRNA for the ?1, ?3 or ?5 subunits did not appear to contribute to sensitivity of cells to FMDV. These findings confirm the requirement for ?V6 and ?V?8 as receptors for isolating FMDV from clinical samples and provide important tools and information for the rational design of recombinant cell lines containing these ligands for improved FMDV diagnosis and vaccine production.

Abstract

As a first attempt to generate sequence information from the protein-coding genes of the genomically unknown parasite, Eimeria brunetti, a cDNA library was generated from purified sporozoites in the ?TriplEx2™ vector. Analysis of 283 expressed sequence tags (ESTs) from the cDNA library constructed revealed 12 contigs (26 ESTs) and 257 singletons. BLASTx analysis revealed that 50 transcripts had significant matches to known proteins, whereas the remaining 233 had no significant matches, probably representing novel genes. Based on Gene Ontology classification, the transcripts were categorized as biological process (46 ESTs), molecular function (37 ESTs), and cellular component (19 ESTs). The transcripts analyzed show maximum homology to the apicomplexan parasite Toxoplasma gondii. Despite the small number of transcripts, this is the first transcriptome analysis of E. brunetti and provides preliminary data that will increase understanding of parasite biological function.

Abstract

The development of drug resistance in Eimeria is common because of extensive use of anticoccidial drugs for the control of avian coccidiosis. The significance of chemotherapy is evident from the fact that, in spite of advancement in the field of immunological, biotechnological and genetic methods, prophylactic chemotherapy with anticoccidial drugs is still widely used for the control of coccidiosis. In such situations, new drugs should be available to replace the older ones against which resistance has developed, however it takes a long time to develop any new compounds. It is therefore currently necessary to develop strategies to minimise the emergence of resistance in Eimeria strains and to prolong the effect of available anticoccidial drugs. This paper summarises the resistance status of Eimeria species in different parts of the world and reviews different types of resistance, mechanism of resistance development, factors involved in the development and spread of resistance, management of resistant strains and strategies to preserve the efficacy of the available anticoccidial drugs. Use of vaccines, synthetic and botanical anticoccidials and educating farmers about recommended coccidiosis control practices are discussed in this review, along with the integration of currently available options for the management of drug resistance and, ultimately, the control of coccidiosis.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.