Ex vivo PD-L1/PD-1 pathway blockade reverses dysfunction of circulating CEA specific T cells in pancreatic cancer patients

Carcinoembryonic antigen (CEA) is a candidate target for cellular immunotherapy of pancreatic cancer (PC). In this study, we have characterised the antigen-specific function of autologous cytotoxic T lymphocytes (CTL) specific for the HLA-A2 restricted peptide, pCEA691-699, isolated from the peripheral T cell repertoire of PC patients and sought to determine if ex vivo PD-L1 & TIM3 blockade could enhance CTL function. CD8+ T cell lines were generated from peripheral blood mononuclear cells (PBMCs) of 18 HLA-A2+ patients with PC and from 15 healthy controls. In vitro peptide specific responses were evaluated by flow cytometry after staining for intracellular cytokine production and CSFE cytotoxicity assays using pancreatic cancer cell lines as targets. Cytokine secreting functional CEA691-specific CTL lines were successfully generated from 10 of 18 PC patients, with two CTL lines able to recognise and kill both CEA691 peptide-loaded T2 cells and CEA+ HLA-A2+ pancreatic cancer cell lines. In the presence of ex vivo PD-L1 blockade, functional CEA691-specific CD8+ T cell responses, including IFN-g secretion and proliferation, were enhanced and this effect was more pronounced on Ag-specific T cells isolated from tumor draining lymph nodes. These data demonstrate that CEA691-specific CTL can be readily expanded from the self-restricted T cell repertoire of PC patients and that their function can be enhanced by PD-L1 blockade.

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.