Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2602 results for your search.
Reitmayer CM, Levitt E, Basu S, Atkinson B, Fragkoudis R, Merits A, Lumley S, Larner W, Diaz AV, Rooney S, Thomas CJE, von Wyschetzki K, Rausalu K, Alphey L (2023)

Mimicking superinfection exclusion disrupts alphavirus infection and transmission in the yellow fever mosquito Aedes aegypti

Proceedings of the National Academy of Sciences 120 (37)

Abstract

Multiple viruses, including pathogenic viruses, bacteriophages, and even plant viruses, cause a phenomenon termed superinfection exclusion whereby a currently infected cell is resistant to secondary infection by the same or a closely related virus. In alphaviruses, this process is thought to be mediated, at least in part, by the viral protease (nsP2) which is responsible for processing the nonstructural polyproteins (P123 and P1234) into individual proteins (nsP1-nsP4), forming the viral replication complex. Taking a synthetic biology approach, we mimicked this naturally occurring phenomenon by generating a superinfection exclusion-like state in Aedes aegypti mosquitoes, rendering them refractory to alphavirus infection. By artificially expressing Sindbis virus (SINV) and chikungunya virus (CHIKV) nsP2 in mosquito cells and transgenic mosquitoes, we demonstrated a reduction in both SINV and CHIKV viral replication rates in cells following viral infection as well as reduced infection prevalence, viral titers, and transmission potential in mosquitoes.

Abstract

Fowl cholera is caused by the bacterium Pasteurella multocida, a highly transmissible avian ailment with significant global implications, leading to substantial economic repercussions. The control of fowl cholera outbreaks primarily relies on vaccination using traditional vaccines that are still in use today despite their many limitations. In this research, we describe the development of a genetically engineered herpesvirus of turkeys (HVT) that carries the OmpH gene from P. multocida integrated into UL 45/46 intergenic region using CRISPR/Cas9-NHEJ and Cre-Lox system editing. The integration and expression of the foreign cassettes were confirmed using polymerase chain reaction (PCR), indirect immunofluorescence assays, and Western blot assays. The novel recombinant virus (rHVT-OmpH) demonstrated stable integration of the OmpH gene even after 15 consecutive in vitro passages, along with similar in vitro growth kinetics as the parent HVT virus. The protective efficacy of the rHVT-OmpH vaccine was evaluated in vaccinated ducks by examining the levels of P. multocida OmpH-specific antibodies in serum samples using ELISA. Groups of ducks that received the rHVT-OmpH vaccine or the rOmpH protein with Montanide™ (SEPPIC, Paris, France) adjuvant exhibited high levels of antibodies, in contrast to the negative control groups that received the parental HVT or PBS. The recombinant rHVT-OmpH vaccine also provided complete protection against exposure to virulent P. multocida X-73 seven days post-vaccination. This outcome not only demonstrates that the HVT vector possesses many characteristics of an ideal recombinant viral vaccine vector for protecting non-chicken hosts, such as ducks, but also represents significant research progress in identifying a modern, effective vaccine candidate for combatting ancient infectious diseases.

Valdez KR, Nzau B, Dorey-Robinson D, Jarman M, Nyagwange J, Schwartz JC, Freimanis G, Steyn AW, Warimwe GM, Morrison LJ, Mwangi W, Charleston B, Bonnet-Di Placido M, Hammond JA (2023)

A Customizable Suite of Methods to Sequence and Annotate Cattle Antibodies

vaccines 11 (6), 1099

Abstract

Studying the antibody response to infection or vaccination is essential for developing more effective vaccines and therapeutics. Advances in high-throughput antibody sequencing technologies and immunoinformatic tools now allow the fast and comprehensive analysis of antibody repertoires at high resolution in any species. Here, we detail a flexible and customizable suite of methods from flow cytometry, single cell sorting, heavy and light chain amplification to antibody sequencing in cattle. These methods were used successfully, including adaptation to the 10x Genomics platform, to isolate native heavy–light chain pairs. When combined with the Ig-Sequence Multi-Species Annotation Tool, this suite represents a powerful toolkit for studying the cattle antibody response with high resolution and precision. Using three workflows, we processed 84, 96, and 8313 cattle B cells from which we sequenced 24, 31, and 4756 antibody heavy–light chain pairs, respectively. Each method has strengths and limitations in terms of the throughput, timeline, specialist equipment, and cost that are each discussed. Moreover, the principles outlined here can be applied to study antibody responses in other mammalian species.

Paladino LZC, Wilson R, Tng PYL, Dhokiya V, Keen E, Cuber P, Larner W, Rooney S, Nicholls M, Uglow A, Williams L, Anderson MAE, Basu S, Leftwich PT, Alphey L (2023)

Optimizing CRE and PhiC31 mediated recombination in Aedes aegypti

Frontiers in Bioengineering and Biotechnology 11

Abstract

Introduction: Genetic manipulation of Aedes aegypti is key to developing a deeper understanding of this insects’ biology, vector-virus interactions and makes future genetic control strategies possible. Despite some advances, this process remains laborious and requires highly skilled researchers and specialist equipment.

Methods: Here we present two improved methods for genetic manipulation in this species. Use of transgenic lines which express Cre recombinase and a plasmid-based method for expressing PhiC31 when injected into early embryos.

Results: Use of transgenic lines which express Cre recombinase allowed, by simple crossing schemes, germline or somatic recombination of transgenes, which could be utilized for numerous genetic manipulations. PhiC31 integrase based methods for site-specific integration of genetic elements was also improved, by developing a plasmid which expresses PhiC31 when injected into early embryos, eliminating the need to use costly and unstable mRNA as is the current standard.

Discussion: Here we have expanded the toolbox for synthetic biology in Ae. aegypti. These methods can be easily transferred into other mosquito and even insect species by identifying appropriate promoter sequences. This advances the ability to manipulate these insects for fundamental studies, and for more applied approaches for pest control.

Abstract

Nairobi sheep disease (NSD), caused by the viral agent NSD virus (NSDV), is a haemorrhagic fever disease affecting and inducing high mortality in sheep and goat populations. NSDV belongs to the genus Orthonairovirus of the Nairoviridae family from the order Bunyavirales. Other viruses circulating in livestock such as Crimean–Congo haemorrhagic fever virus (CCHFV) and Dugbe virus (DUGV) are members of the same genus and are reported to share antigenic features. There are very few available materials to study NSDV infection both in vitro and in vivo. In the present work, we characterised two monoclonal antibodies generated in mice that recognise NSDV specifically but not CCHFV or DUGV, along with a potential use to define virus-infected cells, using flow cytometry. We believe this tool can be useful for research, but also NSDV diagnostics, especially through immunological staining.

Tully M, Batten C, Ashby M, Mahapatra M, Parekh K, Parida S, Njeumi F, Willett B, Bataille A, Libeau G, Kwiatek O, Caron A, Berguido FJ, Lamien CE, Cattoli G, Misinzo G, Keyyu J, Mdetele D, Gakuya F, Bodjo SC, Taha FA, Elbashier HM, Khalafalla AI, Osman AY, Kock R (2023)

The evaluation of five serological assays in determining seroconversion to peste des petits ruminants virus in typical and atypical hosts

scientific reports 13, 14787

Abstract

Peste des petits ruminants (PPR) is an infectious viral disease, primarily of small ruminants such as sheep and goats, but is also known to infect a wide range of wild and domestic Artiodactyls including African buffalo, gazelle, saiga and camels. The livestock-wildlife interface, where free-ranging animals can interact with captive flocks, is the subject of scrutiny as its role in the maintenance and spread of PPR virus (PPRV) is poorly understood. As seroconversion to PPRV indicates previous infection and/or vaccination, the availability of validated serological tools for use in both typical (sheep and goat) and atypical species is essential to support future disease surveillance and control strategies. The virus neutralisation test (VNT) and enzyme-linked immunosorbent assay (ELISA) have been validated using sera from typical host species. Still, the performance of these assays in detecting antibodies from atypical species remains unclear. We examined a large panel of sera (n = 793) from a range of species from multiple countries (sourced 2015–2022) using three tests: VNT, ID VET N-ELISA and AU-PANVAC H-ELISA. A sub-panel (n = 30) was also distributed to two laboratories and tested using the luciferase immunoprecipitation system (LIPS) and a pseudotyped virus neutralisation assay (PVNA). We demonstrate a 75.0–88.0% agreement of positive results for detecting PPRV antibodies in sera from typical species between the VNT and commercial ELISAs, however this decreased to 44.4–62.3% in sera from atypical species, with an inter-species variation. The LIPS and PVNA strongly correlate with the VNT and ELISAs for typical species but vary when testing sera from atypical species.

Abstract

Current legislation in the United Kingdom stipulates that horses should not be slaughtered within sight of one another. However, abattoir personnel anecdotally report that, for semi-feral horses unused to restraint, co-slaughtering alongside a conspecific could reduce distress through social buffering and improve safety, but there is a lack of evidence to support this. CCTV footage from an English abattoir was assessed retrospectively with welfare indicators from when horses entered the kill pen until they were killed. Of 256 horses analysed, 12% (32/256) were co-slaughtered (alongside a conspecific) and 88% (224/256) individually. Co-slaughtered horses moved more in the pen, but individually slaughtered horses showed more agitated behaviour, required more encouragement to enter the kill pen, and experienced more slips or falls. Unrestrained horses (40%; 102/256) showed increased agitation, movement, and agonistic behaviour towards the operator and resisted entry to the kill pen compared to restrained horses (60%; 154/256). Positive interactions between conspecifics were seen in 94% (30/32) of co-slaughtered horses, and only 6% (1/16) showed a startled response to the first horse being shot, with a median time of 15 s between shots. This study highlights the impact that both conspecific and human interactions can have on equine welfare at slaughter. Semi-feral or unrestrained horses appear to experience increased distress compared to horses more familiar with human handling, and the presence of a conspecific at slaughter mitigated this.

Gonzales BL, Andrade DA, Valdivia, CA, Ho-Palma AC, Munguia A, Yucra D, Escobedo M, Crotta M, Limon G, Gonzalez A, Guitian J, Gonzales-Gustavson, E (2023)

Detection and Isolation of Escherichia coli O157:H7 in Beef from Food Markets and Fecal Samples of Dairy Calves in the Peruvian Central Highlands

The American Journal of Tropical Medicine and Hygiene 109 (3), 568-570

Abstract

Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a food and waterborne pathogen with severe public health implications. We report the first-time isolation of this pathogen in the Central Highlands of Peru through standardized culture procedures and polymerase chain reaction (PCR). Escherichia coli strains were cultured from rectal-anal swabs from dairy calves and beef from food markets. The latex agglutination test was used to detect O157 and H7 antigens, and multiplex real-time PCR was carried out to detect virulence-related genes. The STEC O157:H7 strains were isolated from 3.5% (1/28) of beef samples and from 6.0% (3/50) of dairy calves that also carried both eaeA and stx1 genes. Therefore, this pathogen is a potential cause of food/waterborne disease in the region, and its surveillance in both livestock and their products should be improved to characterize the impact of its zoonotic transmission. From 2010 to 2020, E. coli was suspected in 10 outbreaks reported to the Peruvian Ministry of Health. Isolates from future outbreaks should be characterized to assess the burden posed by STEC O157:H7 in Peru.

Abstract

Type I interferons (IFN) are the first line of immune response against infection. In this study, we explore the interaction between Type I IFN and foot-and-mouth disease virus (FMDV), focusing on the effect of this interaction on epithelial cell death. While several mathematical models have explored the interaction between interferon and viruses at a systemic level, with most of the work undertaken on influenza and hepatitis C, these cannot investigate why a virus such as FMDV causes extensive cell death in some epithelial tissues leading to the development of lesions, while other infected epithelial tissues exhibit negligible cell death. Our study shows how a model that includes epithelial tissue structure can explain the development of lesions in some tissues and their absence in others. Furthermore, we show how the site of viral entry in an epithelial tissue, the viral replication rate, IFN production, suppression of viral replication by IFN and IFN release by live cells, all have a major impact on results.

Abstract

Cattle, sheep, and goats are the only species outside primates known to have an expanded and diversified family of killer immunoglobulin-like receptors (KIR). Primate KIR are expressed on the surface of NK and T cells and bind MHC-I to control activation. However, the surface expression, ligands and function of bovid KIR remain unknown. Cattle botaKIR2DL1 is the only functional KIR of the same DL-lineage as the expanded KIR in primates and we examined if leukocyte expression patterns were consistent with human. We raised a specific mouse anti-botaKIR2DL1 monoclonal antibody and assessed its utility in flow cytometry, ELISA, and western blot. Unlike primates, cattle DL-lineage KIR (botaKIR2DL1) is present on B cells and monocytes in addition to T cells and low-level expression on NK cells. Expression decreases after in vitro PBMC stimulation with IL-2. This suggests that botaKIR2DL1 has different functions, and potentially ligands, compared to primate KIR.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.