Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2599 results for your search.
Sanders C J, Mellor P S, Wilson A J (2010)

Invasive arthropods

Revue Scientifique et Technique 29 (2), 273-286

Abstract

Many arthropod species have been transported around the globe and successfully invaded new regions. Invasive arthropods can have severe impacts on animal and human health, agriculture and forestry, and the biodiversity of natural habitats as well as those modified by humans. The economic and environmental effects of invasion can be both direct, through feeding and competition, and indirect, such as the transmission of pathogens. In this paper, the authors consider ten examples that illustrate the main mechanisms of introduction, the characteristics that enable species to rapidly expand their ranges and some of the consequences of their arrival.
Santhakumar D, Forster T, Laqtom N N, Fragkoudis R, Dickinson P, Abreu-Goodger C, Manakov S A, Choudhury N R, Griffiths S J, Vermeulen A, Enright A J, Dutia B, Kohl A, Ghazal P, Buck A H (2010)

Combined agonist-antagonist genome-wide functional screening identifies broadly active antiviral microRNAs

Proceedings of the National Academy of Sciences of the United States of America 107 (31), 13830-13835

Abstract

Although the functional parameters of microRNAs (miRNAs) have been explored in some depth, the roles of these molecules in viral infections remain elusive. Here we report a general method for global analysis of miRNA function that compares the significance of both overexpressing and inhibiting each mouse miRNA on the growth properties of different viruses. Our comparative analysis of representatives of all three herpesvirus subfamilies identified host miRNAs with broad anti- and proviral properties which extend to a single-stranded RNA virus. Specifically, we demonstrate the broad antiviral capacity of miR-199a-3p and illustrate that this individual host-encoded miRNA regulates multiple pathways required and/or activated by viruses, including PI3K/AKT and ERK/MAPK signaling, oxidative stress signaling, and prostaglandin synthesis. Global miRNA expression analysis further demonstrated that the miR-199a/miR-214 cluster is down-regulated in both murine and human cytomegalovirus infection and manifests similar antiviral properties in mouse and human cells. Overall, we report a general strategy for examining the contributions of individual host miRNAs in viral infection and provide evidence that these molecules confer broad inhibitory potential against multiple viruses.

Abstract

Classical swine fever is a notifiable disease of pigs. The causative agent, classical swine fever virus (CSFV), is highly contagious and causes mild to severe haemorrhagic disease depending on the virulence of the strain. The RNA genome of CSFV is translated as a single polyprotein that is processed to yield 12 proteins. Like other pestiviruses, the first protein to be translated is the N-terminal autoprotease termed N-pro. A novel pestiviral protein with no known cellular homologues, IN pro antagonizes type I interferon (IFN) induction by binding and targeting the transcription factor IFN regulatory factor 3 (IRF-3) for ubiquitin-dependent proteasomal degradation. In this study, CSFV-infected PK-15 cells and stable cell lines were used to show that N-pro is itself an unstable protein that is targeted for proteasomal degradation in a ubiquitin-dependent manner. In addition, N-pro is not degraded as a direct consequence of its ability to interact with IRF-3 or to target IRF-3 for proteasomal degradation.

Abstract

At present, the poultry meat and egg industry has gained a lot of ground, being viewed as a provider of a healthy alternative to red meat and other protein sources. If this trend is to be maintained, solutions must be found to improve resistance of chickens to disease, which often is weakened by stressful conditions. In poultry, stress-induced immunosuppression is manifested by failures in vaccination and increased morbidity and mortality of flocks. Currently, several modern cellular and molecular approaches are being used to explore the status of the immune system during stress and disease. It is likely that these new techniques will lead to the development of new strategies for preventing and controlling immunosuppression in poultry. Using quantitative reverse transcription-PCR assays, a broad spectrum of cytokine, chemokine, and their receptor genes can be quantified in birds and then be used as markers to assess the effects of stress on the immune system. Currently, we are investigating immune and endocrine interactions in the chicken, in particular the cells and molecules that are known to be involved in such interactions in mammals. We have evaluated the effects of corticosterone administration in drinking water on peripheral lymphocyte and heterophil cytokine and chemokine gene profiles. In particular, there seems to be effects on cytokine and chemokine mRNA expression levels in both lymphocytes and heterophils, especially expression of the proinflammatory cytokines interleukin (IL)-1 beta, IL-6, and IL-18 and chemokines C-C motif, ligand 1 inflammatory (CCLi1); C-C motif, ligand 2 inflammatory (CCLi2); C-C motif, ligand 5 (CCL5); C-C motif, ligand 16 (CCL16); C-X-C motif ligand 1 inflammatory (CXCLi1); and C-X-C motif ligand 2 inflammatory (CXCLi2), which are initially upregulated and are potentially involved in modulating the adaptive immune response. A chronic treatment with corticosterone downregulates proinflammatory cytokines and chemokines, suggesting that the delayed effects of chronic stress can suppress the immune response. Messenger RNA expression levels of transforming growth factor-beta 4 (TGF-beta 4) are also upregulated in cortisosterone-treated birds. It appears that the balance between T-helper (Th) 1 and Th2/T regulatory cytokine production is altered in conditions associated with significant changes in plasma corticosterone concentration. Experiments are underway to decipher the cytokine and chemokine responses to vaccination and bacterial challenge on the background of stress-induced immunosuppression.

Abstract

In chickens, corticosterone is the end-product of stress. However, the nature of the immune response to elevated plasma corticosterone concentrations at the molecular level has not yet been characterised. We recently demonstrated that exposure to corticosterone in drinking water for 1 week significantly upregulates mRNA expression levels for the pro-inflammatory interleukins (IL)-1 beta, IL-6, IL-18 and the pro-inflammatory chemokine CCLi2 in chicken lymphocytes, particularly 3 h after the treatment started. In the present study, we investigated cytokine and chemokine mRNA expression levels in circulating heterophils of chickens, and show that at 3 h post initial treatment with corticosterone in drinking water (20 mg/1L) the mRNA expression levels for IL-1 beta, IL-6, IL-10, IL-12 alpha and IL-18 are upregulated. The mRNA expression levels for IL-6, IL-10 and IL-18 correlate with plasma corticosterone concentration and total heterophil counts. Corticosterone downregulated the expression levels of all pro-inflammatory cytokines at 24 h and 1 week post-treatments. Repeated treatment with corticosterone upregulated mRNA expression levels of transforming growth factor-beta 4 and the chemokine CCL16. These data indicate that cytokine and chemokine gene expression signatures in chicken heterophils can be altered during stress and therefore could be used as an indicator of stress

Abstract

The aim of this study was to characterize the immune responses of DCs after infection with four different EU Strains of PRRSV and whether they show any ability to immunomodulate T cells activation. Our results show that all EU strains can efficiently infect and replicate in DCs. Nevertheless, SLA-II levels remained unaltered in DC infected by all EU PRRSV strains, whereas SLA-I expression was only reduced when strain 2992 was used. IL-10 production was induced by three EU PRRSV strains, being strain 2992 the highest inducer. However, no induction of Treg cells, measured by CD25 and Foxp3 expression on lymphocytes co-cultured with infected DCs, was found. TGF-beta induction was not detected in DC infected with any EU strain tested. In conclusion, DCs infected with EU PRRSV strains exhibited an unbalanced ability to stimulate T cell response and was strain dependent. However, Treg cells were not induced, at least in vitro.

Abstract

A widely used vaccine against Marek's disease (MD) in poultry is the virus SB-1, which is antigenically-related to the causative agent, Marek's disease herpesvirus. We recently cloned the SB-1 genome as an infectious bacterial artificial chromosome, BAC, (pSB-1). The protective efficacies and replication kinetics of pSB-1 and the parent strain (SB-1) were compared in an experimental model of MD induced by a virulent strain, RB-1B. Although vaccine virus replication and shedding was lower for pSB-1 than for SB-1, both vaccines reduced replication and shedding of RB-1B, and were equally effective in protecting chickens against MD. With the cloning of pSB-1, we have now generated full length genomic clones of MD vaccine virus strains belonging to each of the three serotypes. Vaccine viruses derived from each of these clones demonstrated protective efficacies at levels similar to those produced by the respective parent viruses, demonstrating their suitability to be used as vaccine candidates.

Abstract

Burkholderia species use BimA for intracellular actin-based motility. Uniquely, Burkholderia thailandensis BimA harbors a central and acidic (CA) domain. The CA domain was required for actin-based motility, binding to the cellular Arp2/3 complex, and Arp2/3-dependent polymerization of actin monomers. Our data reveal distinct strategies for actin-based motility among Burkholderia species.

Abstract

MDV-GX0101 is a field strain of Marek's disease virus with a naturally occurring insertion of the reticuloendotheliosis virus (REV) LTR fragment. In order to study the biological properties of REV-LTR insertion in the MDV genome, we constructed a full-length infectious BAC clone of MDV-GX0101 strain and deleted the LTR sequences by BAC mutagenesis. The pathogenic properties of the LTR-deleted virus were evaluated in infected SPF birds. The study demonstrated that the LTR-deleted virus had a stronger inhibitory effect on the growth rates of the infected birds and induced stronger immunosuppressive effects. Surprisingly, however, the ability for horizontal transmission of the LTR-deleted virus appeared to be significantly weaker than its parental LTR-intact virus. Even though the precise molecular mechanisms are still not clear, the results of our studies demonstrate that the retention of the REV-LTR in the MDV genome decreases its pathogenic effects but increases its potential for horizontal transmission.

Abstract

Bluetongue is a viral disease of ruminants transmitted by Culicoides biting midges, which has spread across Europe over the past decade. The disease arrived in south-east England in 2007, raising the possibility that it could pose a risk to the valuable Scottish livestock industry. As part of an assessment of the economic consequences of a bluetongue virus incursion into Scotland commissioned by Scottish Government, we investigated a defined set of feasible incursion scenarios under different vaccination strategies. Our epidemiological simulations, based on expert knowledge, highlighted that infection will rarely spread in Scotland after the initial incursion and will be efficiently controlled by vaccination.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.