Preface content

Vector Molecular Biology

Our group

Mosquito-borne diseases affecting man and livestock constitute a major international socio-economic and public health problem. Vector control through the use of insecticides remains a key, and for some major arboviral pathogens – the only, means of managing these diseases. However, sustainability of the insecticidal tools is threatened by the evolution and increasing spread of insecticide resistance in field mosquito populations. Novel effective approaches to control mosquito-borne diseases are, thus, urgently needed. The the main interest of our group is the understanding of the basic biology of mosquitoes, which is a prerequisite to the development of novel control methods. 

Our aims

Our current research focuses on genes activated during development of major mosquito vector species. Specifically, we are interested in the components of sex determination and spermatogenesis molecular pathways. Interfering with the expression of genes involved in sex determination is expected to lead to elimination of blood-feeding and pathogen-transmitting females either through female-specific embryonic lethality (recently documented by our group for the African malaria mosquito, Anopheles gambiae, cf. Science 2016, Parasites and Vectors, 2018), or masculinization (sex reversal of genetic females into phenotypic males). On the other hand, spermatogenesis genes with no discernible homologues in non-mosquito insect groups represent highly promising targets to cause selective mosquito-specific male sterility.

Our research

We use state of the art methods of transcriptome profiling and comparative genomics to identify genes vital in these processes. Our findings are validated by functional analyses involving RNA in situ hybridization and in vivo knock-down, knock-out, or overexpression of individual genes. Function of genes from both pathways is further exploited by our group in transgenic technology to conditionally eliminate females and efficiently produce sterile male generations for genetic vector control. Beyond genetic control, products of spermatogenesis genes are also analysed as potential targets of new mosquito-specific sterilizing compounds.

Group members

Krzywinska E, Dennison N J, Lycett G J, Krzywinski J (2016)

Science 353 (6294) , 67-69
Krzywinska E, Kokoza V, Morris M, de la Casa-Esperon E, Raikhel A S, Krzywinski J (2016)

Heredity 117 (6) , 408-416

Trim content

® The Pirbright Institute 2020 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.