Publications

Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2599 results for your search.

Abstract

Ehrlichia ruminantium, an obligate intracellular bacterium transmitted by ticks of the genus Amblyomma, causes heartwater disease in ruminants. The gene coding for the major antigenic protein MAP1 is part of a multigene family consisting of a cluster containing 16 paralogs. In the search for differentially regulated genes between E. ruminantium grown in endothelial and tick cell lines that could be used in vaccine development and to determine if differences in the map1 gene cluster exist between different isolates of E. ruminantium, we analyzed the map1 gene cluster of the Senegal and Gardel isolates of E. ruminantium. Both isolates contained the same number of genes, and the same organization as found in the genome sequence of the Welgevonden isolate (H. Van Heerden, N. E. Collins, K. A. Brayton, C. Rademeyer, and B. A. Allsopp, Gene 330:159-168, 2004). However, comparison of two subpopulations of the Gardel isolate maintained in different laboratories demonstrated that recombination between map1-3 and map1-2 had occurred in one subpopulation with deletion of one entire gene. Reverse transcription-PCR on E. ruminantium derived mRNA from infected cells using gene-specific primers revealed that all 16 map1 paralogs were transcribed in endothelial cells. In one vector (Amblyomma variegatum) and several nonvector tick cell lines infected with E. ruminantium, transcripts were found for between 4 and 11 paralogs. In all these cases the transcript for the map1-1 gene was detected and was predominant. Our results indicate that the map1 gene cluster is relatively conserved but can be subject to recombination, and differences in the transcription of map1 multigenes in host and vector cell environments exist.

Abstract

In vitro infection of bovine cells of many origins with the cytopathogenic bovine viral diarrhea virus (cpBVDV) results in the induction of alpha/beta interferon (IFN-alpha/beta), whereas noncytopathogenic BVDV (ncpBVDV) isolates have been shown not to induce IFN-alpha/beta in vitro. Similarly, epBVDV induces IFN-alpha/beta in the early bovine fetus, but ncpBVDV does not. However, acute infection of naive cattle with ncpBVDV results in IFN-alpha/beta production. In this study, we identified and characterized a minor population of cells, present in lymph nodes that produce IFN-alpha in response to ncpBVDV. These cells expressed the myeloid markers CD14, CD11b, and CD172a but did not express CD4 and CD45RB. We also established that these cells produced IFN-alpha in the absence of detectable productive infection.

Abstract

A reverse genetics system for the avian coronavirus infectious bronchitis virus (IBV) has been described in which a full-length cDNA, corresponding to the IBV (Beaudette-CK) genome, was inserted into the vaccinia virus genome following in vitro assembly of three contiguous cDNAs [Casais, R., Thiel. V.. Siddell, S.G., Cavanagh, D., Britton, P., 2001. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J. Virol. 75, 12359-12369]. The method has subsequently been used to generate a recombinant IBV expressing a chimaeric S gene [Casais, R., Dove, B., Cavanagh, D., Britton, P., 2003. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J. Virol. 77, 9084-9089]. Use of vaccinia virus as a vector for the full-length cDNA of the IBV genome has the advantage that modifications can be made to the IBV cDNA using homologous recombination, a method frequently used to insert and delete sequences from the vaccinia virus genome. We describe the use of homologous recombination as a method for modifying the Beaudette full-length cDNA, within the vaccinia virus genome, without the requirement for in vitro assembly of the IBV cDNA. To demonstrate the feasibility of the method we exchanged the ectodomain of the Beaudette spike gene for the corresponding region from IBV M41 and generated two recombinant infectious bronchitis viruses (rIBVs) expressing the chimaeric S protein, validating the method as an alternative way for generating rIBVs.

Abstract

The aim of this study was to further characterize the conformational neutralizing epitopes present on the surface-exposed FG loop of human papillomavirus (HPV) type 16 L1 major capsid protein. We have generated previously two chimeric L1 proteins by insertion of a foreign peptide encoding an epitope of the hepatitis B core (HBc) antigen within the FG loop. In addition, three other chimeric L1 proteins were obtained by replacing three different FG loop sequences by the HBc motif and three others by point mutations. All these chimeric L1 proteins retained the ability to self-assemble into virus-like particles (VLPs), with the exception of the mutant with substitution of the L1 sequence 274279 by the HBc motif. The eight chimeric VLPs were then analyzed for differential reactivity wit a set of six HPV-16 and HPV-31 monoclonal antibodies that bound to conformational and linear epitopes. The binding patterns of these monoclonal antibodies confirmed that the FG loop contained or contributed to neutralizing conformational epitopes. The results obtained suggested that the H31.F7 antibody, an anti-HPV-31 cross-reacting and neutralizing antibody, recognized a conformational epitope situated before the 266-271 sequence. In addition, H16.E70 neutralizing antibody reactivity was reduced with L1 VLPs with an Asn to Ala point mutation at position 270, suggesting that Asn is a part of the epitope recognized by this antibody. This study contributes to the understanding of the antigenic structure of HPV-16 and -31 L1 proteins by confirming that the FG loop contributes to neutralizing epitopes and suggesting the existence of both type-specific and cross-reactive conformational epitopes within the FG loop.

Abstract

The avian coronavirus Infectious bronchitis virus (IBV), like other coronaviruses, expresses several small nonstructural (ns) proteins in addition to those from gene 1 (replicase) and the structural proteins. These coronavirus ns genes differ both in number and in amino acid similarity between the coronavirus groups but show some concordance within a group or subgroup. The functions and requirements of the small ns gene products remain to be elucidated. With the advent of reverse genetics for coronaviruses, the first steps in elucidating their role can be investigated. We have used our reverse genetics system for IBV (R. Casais, V. Thiel, S. G. Siddell, D. Cavanagh, and P. Britton, J. Virol. 75:12359-12369, 2001) to investigate the requirement of IBV gene 5 for replication in vivo, in ovo, and ex vivo. We produced a series of recombinant viruses, with an isogenic background, in which complete expression of gene 5 products was prevented by the inactivation of gene 5 following scrambling of the transcription-associated sequence, thereby preventing the expression of IBV subgenomic mRNA 5, or scrambling either separately or together of the translation initiation codons for the two gene 5 products. As all of the recombinant viruses replicated very similarly to the wild-type virus, Beau-R, we conclude that the IBV gene 5 products are not essential for IBV replication per se and that they are accessory proteins.

Abstract

The ability of emergency foot-and-mouth disease (FMD) vaccine to protect cattle from a heterologous direct-contact challenge and the effect on virus excretion from the oropharynx were examined. An oil adjuvant O1 Manisa FMD vaccine protected 20 cattle from clinical disease following 5 days of direct-contact exposure to five infected cattle at 21 days post vaccination. The donor cattle had been infected by tongue inoculation with a different FMD virus of the same serotype (O UKG 2001). Protection from clinical disease did not prevent localised sub-clinical infection at the oropharynx in most animals, although quantitative reverse transcriptase polymerase chain reaction (RT-PCR) showed that the level of virus replication shortly after direct-contact challenge was greatly reduced in vaccinated animals. Nevertheless, 45% of the vaccinated cattle became persistently infected with 103–106 RNA copies per millilitre of oropharyngeal fluid at 28 days post challenge. However, since live virus could not be readily isolated, the risk of these animals transmitting disease was probably very low. The findings show that even after an extremely severe challenge, use of an emergency vaccine will prevent or reduce local virus replication and thereby dramatically reduce the amount of virus released into the environment in the all-important early post-exposure period. These data should help to model the dynamics of virus transmission in future outbreaks of disease where vaccination is considered.
Dixon L K, Escribano J, Martins C, Rock D L, Salas M L, Wilkinson P J (2005)

The Asfarviridae

Virus Taxonomy: classification and nomenclature of viruses. (VIII report of the International Committee on Taxonomy of Viruses), 135-143
Publisher’s version:

Abstract

Human coinfection with the helminth parasite Schistosoma mansoni and hepatitis B and hepatitis C viruses is associated with increased hepatic viral burdens and severe liver pathology. In this study we developed a murine S. mansonillymphocytic choriomeningitis virus (LCMV) coinfection model that reproduces the enhanced viral replication and liver pathology observed in human coinfections, and used this model to explore the mechanisms involved. Viral coinfection during the Th2-dominated granulomatous phase of the schistosome infection resulted in induction of a strong LCMV-specific T cell response, with infiltration of high numbers of LCMV-specific IFN-gamma-producing CD8(+) cells into the liver. This was associated with suppression of production of the Th2 cytokines dominant during S. mansoni infection and a rapid increase in morbidity, linked to hepatotoxicity. Interestingly, the liver of coinfected mice was extremely susceptible to viral replication. This correlated with a reduced intrahepatic type I IFN response following virus infection. Schistosome egg Ags were found to suppress the type I IFN response induced in murine bone marrow-derived dendritic cells by polyinosinic-polycytidylic acid. These results suggest that suppression of the antiviral type I IFN response by schistosome egg Ags in vivo predisposes the liver to enhanced viral replication with ensuing immunopathological consequences, findings that maybe paralleled inhuman schistosome/hepatotropic virus coinfections.
Faburay B, Munstermann S, Geysen D, Bell-Sakyi L, Ceesay A, Bodaan C, Jongejan F (2005)

Point seroprevalence survey of Ehrlichia ruminantium infection in small ruminants in The Gambia

Clinical and Diagnostic Laboratory Immunology 12 (4), 508-512

Abstract

Using the MAP1-B enzyme-linked immunosorbent assay, we tested 1,318 serum samples collected from sheep and goats at 28 sites in the five divisions of The Gambia to determine the Ehrlichia ruminantium seroprevalence rates and to assess the risk for heartwater. About half (51.6 %) of 639 sheep were positive, with seroprevalence rates per site varying between 6.9 % and 100 %. The highest seroprevallence was detected in the western part of the country (88.1 % in the Western Division and 62.1 % in the Lower River Division). Sheep in the two easterly divisions (Central River and Upper River divisions) showed the lowest seroprevalence of 29.3 % and 32.4 %, respectively, while those in the North Bank Division showed an intermediate prevalence of 40.6 %. In goats, less than one-third (30.3 %) of 679 animals tested were positive. The highest seroprevalence was detected in goats in the North Bank Division (59 %) and Western Division (44.1 %). Goats in the Lower River Division showed an intermediate level of 21.9 %, whereas the lowest rates were found in the eastern part of the country (4.8 % in the Central River Division and 2.3 % in the Upper River Division). At nearly all sites, seroprevalence rates were higher in sheep than in goats. The results show a gradient of increasing heartwater risk for susceptible small ruminants from the east to the west of The Gambia. These findings need to be taken into consideration when future livestock-upgrading programs are implemented.
Gong P, Epton M J, Fu G L, Scaife S, Hiscox A, Condon K C, Condon G C, Morrison N I, Kelly D W, Dafa'alla T, Coleman P G, Alphey L (2005)

A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly

Nature Biotechnology 23 (4), 453-456
Publisher’s version: http://dx.doi.org/10.1038/nbt1071

Abstract

The Sterile Insect Technique (SIT) used to control insect pests relies on the release of large numbers of radiation-sterilized insects. Irradiation can have a negative impact on the subsequent performance of the released insects(1-4) and therefore on the cost and effectiveness of a control program(5). This and other problems associated with current SIT programs could be overcome by the use of recombinant DNA methods and molecular genetics(6-12). Here we describe the construction of strains of the Mediterranean fruit fly (medfly) harboring a tetracycline-repressible transactivator (tTA) that causes lethality in early developmental stages of the heterozygous progeny but has little effect on the survival of the parental transgenic tTA insects. We show that these properties should prove advantageous for the implementation of insect pest control programs.

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.