Publications

The Pirbright Institute publication directory contains details of selected publications written by our researchers.

There were a total of 2603 results for your search.

Abstract

Genetics can potentially provide new, species-specific, environmentally friendly methods for mosquito control. Genetic control strategies aim either to suppress target populations or to introduce a harm-reducing novel trait. Different approaches differ considerably in their properties, especially between self-limiting strategies, where the modification has limited persistence, and self-sustaining strategies, which are intended to persist indefinitely in the target population and may invade other populations. Several methods with different molecular biology are under development and the first field trials have been completed successfully.

Abstract

Background: Ticks represent a significant health risk to animals and humans due to the variety of pathogens they can transmit during feeding. The traditional use of chemicals to control ticks has serious drawbacks, including the selection of acaricide-resistant ticks and environmental contamination with chemical residues. Vaccination with the tick midgut antigen BM86 was shown to be a good alternative for cattle tick control. However, results vary considerably between tick species and geographic location. Therefore, new antigens are required for the development of vaccines controlling both tick infestations and pathogen infection/transmission. Tick proteins involved in tick-pathogen interactions may provide good candidate protective antigens for these vaccines, but appropriate screening procedures are needed to select the best candidates. Methods: In this study, we selected proteins involved in tick-Anaplasma (Subolesin and SILK) and tick-Babesia (TROSPA) interactions and used in vitro capillary feeding to characterize their potential as antigens for the control of cattle tick infestations and infection with Anaplasma marginale and Babesia bigemina. Purified rabbit polyclonal antibodies were generated against recombinant SUB, SILK and TROSPA and added to uninfected or infected bovine blood to capillary-feed female Rhipicephalus (Boophilus) microplus ticks. Tick weight, oviposition and pathogen DNA levels were determined in treated and control ticks. Results: The specificity of purified rabbit polyclonal antibodies against tick recombinant proteins was confirmed by Western blot and against native proteins in tick cell lines and tick tissues using immunofluorescence. Capillary-fed ticks ingested antibodies added to the blood meal and the effect of these antibodies on tick weight and oviposition was shown. However, no effect was observed on pathogen DNA levels. Conclusions: These results highlighted the advantages and some of the disadvantages of in vitro tick capillary feeding for the characterization of candidate tick protective antigens. While an effect on tick weight and oviposition was observed, the effect on pathogen levels was not evident probably due to high tick-to-tick variations among other factors. Nevertheless, these results together with previous results of RNA interference functional studies suggest that these proteins are good candidate vaccine antigens for the control of R. microplus infestations and infection with A. marginale and B. bigemina.
Ascough S, Ingram R J, Abarra A, Holmes A J, Maillere B, Altmann D M, Boyton R J (2014)

Injectional anthrax infection due to heroin use induces strong immunological memory

Journal of Infection 68 (2), 200-203
Ascough S, Ingram R J, Chu K K, Reynolds C J, Musson J A, Doganay M, Metan G, Ozkul Y, Baillie L, Sriskandan S, Moore S J, Gallagher T B, Dyson H, Williamson E D, Robinson J H, Maillere B, Boyton R J, Altmann D M (2014)

Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4(+) T cell immunity

PLoS Pathogens 10 (5), e1004085

Abstract

Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4(+) T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.

Abstract

Five neutralizing antigenic sites have been described for serotype O foot-and-mouth disease viruses (FMDV) based on monoclonal antibody (mAb) escape mutant studies. However, a mutant virus selected to escape neutralization of mAb binding at all five sites was previously shown to confer complete cross-protection with the parental virus in guinea pig challenge studies, suggesting that amino acid residues outside of the mAb binding sites contribute to antibody-mediated in vivo neutralization of FMDV. Comparison of the ability of bovine antisera to neutralize a panel of serotype O FMDV identified three novel putative sites at VP2-74, VP2-191 and VP3-85, where amino acid substitutions correlated with changes in sero-reactivity. The impact of these positions was tested using site-directed mutagenesis to effect substitutions at critical amino acid residues within an infectious copy of FMDV O1 Kaufbeuren (O1K). Recovered viruses containing additional mutations at VP2-74 and VP2-191 exhibited greater resistance to neutralization with both O1K guinea pig and O BFS bovine antisera than a virus that was engineered to include only mutations at the five known antigenic sites. The changes at VP2-74 and VP3-85 are adjacent to critical amino acids that define antigenic sites 2 and 4, respectively. However VP2-191 (17A away from VP2-72), located at the 3-fold axis and more distant from previously identified antigenic sites exhibited the most profound effect. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and will improve our strategies for vaccine strain selection and rational vaccine design.

Abstract

Bovine viral diarrhoea virus (BVDV) is an economically important animal pathogen, which like other pestiviruses has similar molecular biological features to hepaciviruses, including human Hepatitis C virus. The pestivirus E2 glycoproteins are the major target for virus-neutralising antibodies, as well as playing a role in receptor binding and host range restriction. In this study, recombinant E2 glycoproteins (rE2) derived from three different pestivirus species were examined for their inhibitory effects on pestivirus infectivity in cell culture. Histidine-tagged rE2 glycoproteins of BVDV type 2 strain 178003, BVDV type 1 strain Oregon C24V and CSFV strain Alfort 187 were produced in Spodoptera frugiperda insect cells and purified under native conditions. The ability of rE2 glycoprotein to inhibit the infection of permissive cells by both homologous and heterologous virus was compared, revealing that the inhibitory effects of rE2 glycoproteins correlated with the predicted similarity of the E2 structures in the recombinant protein and the test virus. This result suggests that the sequence and structure of E2 are likely to be involved in the host specificity of pestiviruses at their point of uptake into cells.
Bachanek-Bankowska K, Maan S, Castillo-Olivares J, Manning N M, Maan N S, Potgieter A C, Di Nardo A, Sutton G, Batten C, Mertens P P C (2014)

Real time RT-PCR assays for detection and typing of African horse sickness virus

PLoS ONE 9 (4), e93758

Abstract

Although African horse sickness (AHS) can cause up to 95% mortality in horses, naïve animals can be protected by vaccination against the homologous AHSV serotype. Genome segment 2 (Seg-2) encodes outer capsid protein VP2, the most variable of the AHSV proteins. VP2 is also a primary target for AHSV specific neutralising antibodies, and consequently determines the identity of the nine AHSV serotypes. In contrast VP1 (the viral polymerase) and VP3 (the sub-core shell protein), encoded by Seg-1 and Seg-3 respectively, are highly conserved, representing virus species/orbivirus-serogroup-specific antigens. We report development and evaluation of real-time RT-PCR assays targeting AHSV Seg-1 or Seg-3, that can detect any AHSV type (virus species/serogroup-specific assays), as well as type-specific assays targeting Seg-2 of the nine AHSV serotypes. These assays were evaluated using isolates of different AHSV serotypes and other closely related orbiviruses, from the ‘Orbivirus Reference Collection’ (ORC) at The Pirbright Institute. The assays were shown to be AHSV virus-species-specific, or type-specific (as designed) and can be used for rapid, sensitive and reliable detection and identification (typing) of AHSV RNA in infected blood, tissue samples, homogenised Culicoides, or tissue culture supernatant. None of the assays amplified cDNAs from closely related heterologous orbiviruses, or from uninfected host animals or cell cultures.
Balenghien T, Pagès N, Goffredo M, Carpenter S, Augot D, Jacquier E, Talavera S, Monaco F, Depaquit J, Grillet C, Pujols J, Satta G, Kasbari M, Setier-Rio M-L, Izzo F, Alkan C, Delécolle J-C, Quaglia M, Charrel R, Polci A, Bréard E, Federici V, Cêtre-Sossah C, Garros C (2014)

The emergence of Schmallenberg virus across Culicoides communities and ecosystems in Europe

Preventive Veterinary Medicine 116 (4), 360-369

Abstract

Schmallenberg virus (SBV), a novel arboviral pathogen, has emerged and spread across Europe since 2011 inflicting congenital deformities in the offspring of infected adult ruminants. Several species of Culicoides biting midges (Diptera: Ceratopogonidae) have been implicated in the transmission of SBV through studies conducted in northern Europe. In this study Culicoides from SBV outbreak areas of mainland France and Italy (Sardinia) were screened for viral RNA. The role of both C. obsoletus and the Obsoletus complex (C. obsoletus and C. scoticus) in transmission of SBV were confirmed in France and SBV was also discovered in a pool of C. nubeculosus for the first time, implicating this species as a potential vector. While collections in Sardinia were dominated by C. imicola, only relatively small quantities of SBV RNA were detected in pools of this species and conclusive evidence of its potential role in transmission is required. In addition to these field-based studies, infection rates in colony-derived individuals of C. nubeculosus and field-collected C. scoticus are also examined in the laboratory. Rates of infection in C. nubeculosus were low, confirming previous studies, while preliminary examination of C. scoticus demonstrated that while this species can replicate SBV to a potentially transmissible level, further work is required to fully define comparative competence between species in the region. Finally, the oral competence for SBV of two abundant and widespread mosquito vector species in the laboratory is assessed. Neither Aedes albopictus nor Culex pipiens were demonstrated to replicate SBV to transmissible levels and appear unlikely to play a major role in transmission. Other vector competence data produced from studies across Europe to date is then comprehensively reviewed and compared with that generated previously for bluetongue virus.
Banyard A C, Brüning-Richardson A, Parida S (2014)

Rinderpest virus

Manual of Security Sensitive Microbes and Toxins (edited by D Liu, CRC Press), 715-724
Publisher’s version:

Pages

Filter Publications

Trim content

® The Pirbright Institute 2024 | A company limited by guarantee, registered in England no. 559784. The Institute is also a registered charity.